We have obtained transgenic tobacco plants overexpressing the enzyme glutamine synthetase (GS) by fusing an alfalfa GS gene to the cauliflower mosaic virus 35S promotor and integrating it into Nicotiana tabacum var. W38 plants by Agrobacterium tumefaciens mediated gene transfer. The amount of RNA specific to alfalfa GS was about 10 times higher in transgenic tobacco plants than in alfalfa. The alfalfa GS produced by these transgenic plants was identified by Western blotting and represented 5% of total soluble protein in the transformed plants, amounting to a 5-fold increase in specific GS activity and in a 20-fold increase in resistance to the GS inhibitor L-phosphinothricin in vitro. Tissue from GS overproducing plants showed a sevenfold lower amount of free NH3. The amino acid composition of the plant tissue was not altered significantly by GS overproduction. GS overproducing plants were fertile and grew normally. These data show that a high level of expression of a key metabolic enzyme such as glutamine synthetase does not interfere with growth and fertility of plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.