It is shown that the multiple alignment problem with SP-score is NP-hard for each scoring matrix in a broad class M that includes most scoring matrices actually used in biological applications. The problem remains NP-hard even if sequences can only be shifted relative to each other and no internal gaps are allowed. It is also shown that there is a scoring matrix M(0) such that the multiple alignment problem for M(0) is MAX-SNP-hard, regardless of whether or not internal gaps are allowed.
We study ODE models of epidemic spreading with a preventive behavioral response that is triggered by awareness of the infection. Previous studies of such models have mostly focused on the impact of the response on the initial growth of an outbreak and the existence and location of endemic equilibria. Here we study the question whether this type of response is sufficient to prevent future flare-ups from low endemic levels if awareness is assumed to decay over time. In the ODE context, such flare-ups would translate into sustained oscillations with significant amplitudes. Our results show that such oscillations are ruled out in Susceptible-Aware-Infectious-Susceptible models with a single compartment of aware hosts, but can occur if we consider two distinct compartments of aware hosts who differ in their willingness to alert other susceptible hosts.
Canalizing functions have important applications in physics and biology. For
example, they represent a mechanism capable of stabilizing chaotic behavior in
Boolean network models of discrete dynamical systems. When comparing the class
of canalizing functions to other classes of functions with respect to their
evolutionary plausibility as emergent control rules in genetic regulatory
systems, it is informative to know the number of canalizing functions with a
given number of input variables. This is also important in the context of using
the class of canalizing functions as a constraint during the inference of
genetic networks from gene expression data. To this end, we derive an exact
formula for the number of canalizing Boolean functions of n variables. We also
derive a formula for the probability that a random Boolean function is
canalizing for any given bias p of taking the value 1. In addition, we consider
the number and probability of Boolean functions that are canalizing for exactly
k variables. Finally, we provide an algorithm for randomly generating
canalizing functions with a given bias p and any number of variables, which is
needed for Monte Carlo simulations of Boolean networks
We consider a general class of purely inhibitory and excitatory-inhibitory neuronal networks, with a general class of network architectures, and characterize the complex firing patterns that emerge. Our strategy for studying these networks is to first reduce them to a discrete model. In the discrete model, each neuron is represented as a finite number of states and there are rules for how a neuron transitions from one state to another. In this paper, we rigorously demonstrate that the continuous neuronal model can be reduced to the discrete model if the intrinsic and synaptic properties of the cells are chosen appropriately. In a companion paper [1], we analyze the discrete model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.