We apply regenerative theory to derive certain relations between steady state probabilities of a Markov chain. These relations are then used to develop a numerical algorithm to find these probabilities. The algorithm is a modification of the Gauss-Jordan method, in which all elements used in numerical computations are nonnegative; as a consequence, the algorithm is numerically stable.
GDM may be an important driver for the T2DM epidemic in many subpopulations. Because GDM is a readily identifiable, preventable, and treatable condition, investments in prevention, rapid diagnosis, and evidence-based treatment of GDM in at-risk populations may offer substantial benefit in lowering the T2DM burden over many generations. Model-informed data collection can aid in assessing intervention tradeoffs.
In this paper we consider two-dimensional Markov chains with the property that, except for some boundary conditions, when the transition matrix is written in block form, the rows are identical except for a shift to the right. We provide a general theory for finding the equilibrium distribution for this class of chains. We illustrate theory by showing how our results unify the analysis of the M/G/1 and GI/M/1 paradigms introduced by M. F. Neuts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.