In this paper we study a marked empirical process based on residuals. Results on its large-sample behavior may be used to provide nonparametric full-model checks for regression. Their decomposition into principal components gives new insight into the question: which kind of departure from a hypothetical model may be well detected by residual-based goodness-of-fit methods? The work also contains a small simulation study on straight-line regression.
In this paper we propose and study non-parametric tests for the validity of (composite) Generalized Linear Models with a given parametric link structure, which are based on certain empirical processes marked by the residuals. When properly transformed to their innovation part the resulting test statistics are distribution-free. The method perfectly adapts to a situation, when also the input vector follows a dimension reducing model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.