The incidence of geriatric hip fractures continues to rise in our aging population and has become a major public health concern globally. The primary outcome of this study was to determine whether Age-adjusted Charlson Comorbidity Index (ACCI) is associated with increased fracture-related complications in neck of femur fractures treated by internal fixation. This was a cohort study between January 2014 to June 2018. All patients ≥ 50 years old with an acute neck of femur fracture after low-energy trauma fixed with cannulated hip screws were included and followed-up for 1 year at a tertiary centre. Primary outcome was to determine whether ACCI was associated with increased fracture-related complications. Secondary outcomes were revision rate, mortality, and function after surgery. Further analysis were performed within a “younger” group (age 50–65) and “elder” group (age > 65), as displaced fractures (Garden Type III/IV) were in “younger” group. 233 hip fractures (68 males; 165 females) with a mean age of 73.04 ± 12.89 were included in the study. Surgical outcomes showed that the complication rate of hip screw fixation for all patients was 21.5% (50 patients) at 1 year. ACCI was significantly higher in all patients with complications (p = 0.000). Analysis within “younger” (p = 0.000) and “elder” groups (p = 0.006) both showed significance. Stepwise logistic regression modelling showed ACCI had positive correlation with complications with ACCI = 6 (OR 4.27, p = 0.02). R2 values were comparatively better after controlled by Garden Type III/IV at ACCI = 4 (OR 6.42 (1.70, 24.25), p = 0.01). The authors recommend that for patients with a Garden Type I/II and ACCI ≥ 6 or a Garden Type III/IV and ACCI ≥ 4, a direct arthroplasty surgery should be considered.
Cement arterio-venogram is a rare event with cement extrusion into femoral nutrient vessels. In literature it is known to be benign with no significant clinical sequelae. It is postulated that it is due to high cement implantation pressure, that results in optimal cement filling quality. All previously reported cases were female patients, and it is thought to be a female only phenomenon due to the relatively narrow femoral canal leading to higher pressures during cementation. In this case series we report 3 cases different to existing literature. All 3 patients showed a cement arterio-venogram together with bone cement implantation syndrome and hypotension intraoperatively. It was also observed that during implantation the cement was of low viscosity. We postulate low cement viscosity during implantation with pressurization is also a contributing factor to these phenomena. This case series also demonstrates the first 2 male cases, showing this the even can occur in males too. The cement arteriovenogram is located at 41%–42% femur length which is within the ‘third sixth’ of the length of the femur. Good cementation techniques and prevention is also highlighted in this report.
Background There are more than 300,000 hip fractures yearly in the USA with mortality rates of 20% within 1 year. The treatment of osteoporotic fractures is a major challenge as bone quality is poor, and healing is expected to delay due to the impaired healing properties with respect to bone formation, angiogenesis, and mineralization. Enhancement of osteoporotic fracture healing and function is therefore critical as a major goal in modern fracture management. Previous pre-clinical studies have shown that low-magnitude high-frequency vibration (LMHFV) accelerates osteoporotic fracture healing. The objective of this study is to investigate the effect of LMHFV on accelerating trochanteric hip fracture healing and functional recovery. Methods This is a randomized, double-blinded, placebo-controlled clinical trial to evaluate the effect of LMHFV in accelerating trochanteric hip fracture healing. All fractures undergo cephalomedullary nail fixation. The primary outcome of this study is time to fracture healing by X-ray. Computed tomography (CT) and dual-energy X-ray absorptiometry (DXA) will also be performed. Blood circulation at the fracture site will be assessed by dynamic perfusion magnetic resonance (MR). Clinical results include functional recovery by muscle strength, timed up and go test (TUG), quality of life questionnaire (SF-36), balancing, falls, and mortality. Discussion Previous animal studies have demonstrated LMHFV to improve both normal and osteoporotic fracture healing by accelerating callus formation and mineralization. The mechanical stimulation stimulates angiogenesis by significantly enhancing vascular volume and blood flow velocity. This is the first study to translate LMHFV to enhancing hip fracture healing clinically. Positive results would provide a huge impact in the recovery of hip fracture patients and save healthcare costs. Trial registration Clinicaltrials.gov NCT04063891. Registered on August 21, 2019
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.