The mechanisms governing how the hippocampus selects neurons to exhibit place fields are not well understood. A default assumption in some previous studies was the uniform random draw with replacement (URDWR) model, which, theoretically, maximizes spatial "pattern separation", and predicts a Poisson distribution of the numbers of place fields expressed by a given cell per unit area. The actual distribution of mean firing rates exhibited by a population of hippocampal neurons, however, is approximately exponential or log-normal in a given environment and these rates are somewhat correlated across multiple places, at least under some conditions. The advantage of neural activity-dependent immediate-early gene (IEG) analysis, as a proxy for electrophysiological recording, is the ability to obtain much larger samples of cells, even those whose activity is so sparse that they are overlooked in recording studies. Thus, a more accurate representation of the activation statistics can potentially be achieved. Some previous IEG studies that examined behavior-driven IEG expression in CA1 appear to support URDWR. There was, however, in some of the same studies, an under-recruitment of dentate gyrus granule cells, indicating a highly skewed excitability distribution, which is inconsistent with URDWR. Although it was suggested that this skewness might be related to increased excitability of recently generated granule cells, we show here that CA1, CA3, and subiculum also exhibit cumulative under-recruitment of neurons. Thus, a highly skewed excitability distribution is a general principle common to all major hippocampal subfields. Finally, a more detailed analysis of the frequency distributions of IEG intranuclear transcription foci suggests that a large fraction of hippocampal neurons is virtually silent, even during sleep. Whether the skewing of the excitability distribution is cell-intrinsic or a network phenomenon, and the degree to which this excitability is fixed or possibly time-varying are open questions for future studies. © 2016 Wiley Periodicals, Inc.
Immediate‐early genes (IEGs) exhibit a rapid, transient transcription response to neuronal activation. Fluorescently labeled mRNA transcripts appear as bright intranuclear transcription foci (INF), which have been used as an all‐or‐nothing indicator of recent neuronal activity; however, it would be useful to know whether INF fluorescence can be used effectively to assess relative activations within a neural population. We quantified the Homer1a (H1a) response of hippocampal neurons to systematically varied numbers of exposures to the same places by inducing male Long‐Evans rats to run laps around a track. Previous studies reveal relatively stable firing rates across laps on a familiar track. A strong linear trend (r2 > 0.9) in INF intensity was observed between 1 and 25 laps, after which INF intensity declined as a consequence of dispersion related to the greater elapsed time. When the integrated fluorescence of the entire nucleus was considered instead, the linear relationship extended to 50 laps. However, there was only an approximate doubling of H1a detected for this 50‐fold variation in total spiking. Thus, the intranuclear H1a RNA fluorescent signal does provide a relative measure of how many times a set of neurons was activated over a ~10 min period, but the dynamic range and hence signal‐to‐noise ratios are poor. This low dynamic range may reflect previously reported reductions in the IEG response during repeated episodes of behavior over longer time scales. It remains to be determined how well the H1a signal reflects relative firing rates within a population of neurons in response to a single, discrete behavioral event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.