This paper proposes a new large margin classifier-the structured large margin machine (SLMM)-that is sensitive to the structure of the data distribution. The SLMM approach incorporates the merits of "structured" learning models, such as radial basis function networks and Gaussian mixture models, with the advantages of "unstructured" large margin learning schemes, such as support vector machines and maxi-min margin machines. We derive the SLMM model from the concepts of "structured degree" and "homospace", based on an analysis of existing structured and unstructured learning models. Then, by using Ward's agglomerative hierarchical clustering on input data (or data mappings in the kernel space) to extract the underlying data structure, we formulate SLMM training as a sequential second order cone programming. Many promising features of the SLMM approach are illustrated, including its accuracy, scalability, extensibility, and noise tolerance. We also demonstrate the theoretical importance of the SLMM model by showing that it generalizes existing approaches, such as SVMs and M 4 s, provides novel insight into learning models, and lays a foundation for conceiving other "structured" classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.