Investigators have long suspected that pathogenic microbes might contribute to the onset and progression of Alzheimer's disease (AD) although definitive evidence has not been presented. Whether such findings represent a causal contribution, or reflect opportunistic passengers of neurodegeneration, is also difficult to resolve. We constructed multiscale networks of the late-onset AD-associated virome, integrating genomic, transcriptomic, proteomic, and histopathological data across four brain regions from human post-mortem tissue. We observed increased human herpesvirus 6A (HHV-6A) and human herpesvirus 7 (HHV-7) from subjects with AD compared with controls. These results were replicated in two additional, independent and geographically dispersed cohorts. We observed regulatory relationships linking viral abundance and modulators of APP metabolism, including induction of APBB2, APPBP2, BIN1, BACE1, CLU, PICALM, and PSEN1 by HHV-6A. This study elucidates networks linking molecular, clinical, and neuropathological features with viral activity and is consistent with viral activity constituting a general feature of AD.
The apolipoprotein E (APOE) epsilon4 allele is the best established genetic risk factor for late-onset Alzheimer's disease (LOAD). We conducted genome-wide surveys of 502,627 single-nucleotide polymorphisms (SNPs) to characterize and confirm other LOAD susceptibility genes. In epsilon4 carriers from neuropathologically verified discovery, neuropathologically verified replication, and clinically characterized replication cohorts of 1411 cases and controls, LOAD was associated with six SNPs from the GRB-associated binding protein 2 (GAB2) gene and a common haplotype encompassing the entire GAB2 gene. SNP rs2373115 (p = 9 x 10(-11)) was associated with an odds ratio of 4.06 (confidence interval 2.81-14.69), which interacts with APOE epsilon4 to further modify risk. GAB2 was overexpressed in pathologically vulnerable neurons; the Gab2 protein was detected in neurons, tangle-bearing neurons, and dystrophic neuritis; and interference with GAB2 gene expression increased tau phosphorylation. Our findings suggest that GAB2 modifies LOAD risk in APOE epsilon4 carriers and influences Alzheimer's neuropathology.
Alzheimer's disease (AD) is associated with regional reductions in fluorodeoxyglucose positron emission tomography (FDG PET) measurements of the cerebral metabolic rate for glucose, which may begin long before the onset of histopathological or clinical features, especially in carriers of a common AD susceptibility gene. Molecular evaluation of cells from metabolically affected brain regions could provide new information about the pathogenesis of AD and new targets at which to aim disease-slowing and prevention therapies. Data from a genome-wide transcriptomic study were used to compare the expression of 80 metabolically relevant nuclear genes from laser-capture microdissected non-tangle-bearing neurons from autopsy brains of AD cases and normal controls in posterior cingulate cortex, which is metabolically affected in the earliest stages; other brain regions metabolically affected in PET studies of AD or normal aging; and visual cortex, which is relatively spared. Compared with controls, AD cases had significantly lower expression of 70% of the nuclear genes encoding subunits of the mitochondrial electron transport chain in posterior cingulate cortex, 65% of those in the middle temporal gyrus, 61% of those in hippocampal CA1, 23% of those in entorhinal cortex, 16% of those in visual cortex, and 5% of those in the superior frontal gyrus. Western blots confirmed underexpression of those complex I-V subunits assessed at the protein level. Cerebral metabolic rate for glucose abnormalities in FDG PET studies of AD may be associated with reduced neuronal expression of nuclear genes encoding subunits of the mitochondrial electron transport chain.gene expression ͉ Affymetrix microarrays ͉ laser capture micro-dissection A lzheimer's disease (AD) is associated with characteristic and progressive reductions in regional positron emission tomography (PET) measurements of the cerebral metabolic rate for glucose (CMRgl). These CMRgl reductions have been reported in the posterior cingulate, parietal, and temporal cortex, and in the frontal cortex and whole brain in more severely affected patients (1-5). Other studies have reported CMRgl reductions in anatomically well characterized hippocampal and entorhinal cortical regions of interest (6-10). The posterior cingulate cortex (PCC) and the neighboring precuneus are metabolically affected in the earliest clinical and preclinical stages of AD (4, 11), and the primary visual cortex is relatively spared (4, 11). In an ongoing series of studies, we have detected CMRgl reductions in cognitively normal carriers of the apolipoprotein E (APOE) 4 allele (11-15), a common late-onset AD susceptibility gene (16)(17)(18). CMRgl reductions in AD-affected areas were correlated with APOE 4 gene dose (i.e., three levels of genetic risk for AD) and were progressive in late-middle-aged persons (19). These reductions were also apparent in young adult APOE 4 heterozygotes (13), more than four decades before the anticipated median onset of dementia, years before the expected onset of the major histopa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.