This study investigates the effectiveness of the microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) for nutrient release and cell destruction of the extracted activated sludge cells that are EPS-free. The concentrations of ammonia and soluble chemical oxygen demand increased with an increase of microwave temperature and hydrogen peroxide dosage. Orthophosphate could be released from these extracted cells at lower microwave temperatures and lower H(2)O(2) dosages compared to our previous studies using activated sludge. Higher concentrations of carbohydrate were released into the solution with an increase of microwave temperature. For the same microwave temperatures, carbohydrate release was first increased with the addition of H(2)O(2), and then decreased as the H(2)O(2) dosages increased further. The amount of DNA in solution was a good indicator of the extent of cell damage; the high concentration of DNA released into solution after treatment indicated significant cell damage.
This study investigated the treatment of dairy manure using the microwave enhanced advanced oxidation process (MW-AOP) at pH 2. An experimental design was developed based on a statistical program using response surface methodology to explore the effects of temperature, hydrogen peroxide dosage and heating time on sugar production, nutrient release and solids destruction. Temperature, hydrogen peroxide dosage and acid concentration were key factors affecting reducing sugar production. The highest reducing sugar yield of 7.4% was obtained at 160°C, 0 mL, 15 min heating time, and no H(2)O(2) addition. Temperature was a dominant factor for an increase of soluble chemical oxygen demand (SCOD) in the treated dairy manure. The important factors for volatile fatty acids (VFA) production were microwave temperature and hydrogen peroxide dosage. Temperature was the most important parameter, and heating time, to a lesser extent affecting orthophosphate release. Heating time, hydrogen peroxide dosage and temperature were significant factors for ammonia release. There was a maximum of 96% and 196% increase in orthophosphate and ammonia concentration, respectively at 160°C, 0.5 mL H(2)O(2) and 15 min heating time. The MW-AOP is an effective method in dairy manure treatment for sugar production, nutrient solubilisation, and solids disintegration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.