When designing a distributed network protocol, typically it is infeasible to fully define the target network where the protocol is intended to be used. It is therefore natural to ask: How faithfully do protocol designers really need to understand the networks they design for? What are the important signals that endpoints should listen to? How can researchers gain confidence that systems that work well on well-characterized test networks during development will also perform adequately on real networks that are inevitably more complex, or future networks yet to be developed? Is there a tradeoff between the performance of a protocol and the breadth of its intended operating range of networks? What is the cost of playing fairly with cross-traffic that is governed by another protocol?We examine these questions quantitatively in the context of congestion control, by using an automated protocol-design tool to approximate the best possible congestion-control scheme given imperfect prior knowledge about the network. We found only weak evidence of a tradeoff between operating range in link speeds and performance, even when the operating range was extended to cover a thousand-fold range of link speeds. We found that it may be acceptable to simplify some characteristics of the network-such as its topology-when modeling for design purposes. Some other features, such as the degree of multiplexing and the aggressiveness of contending endpoints, are important to capture in a model.
This paper describes a new approach to end-to-end congestion control on a multi-user network. Rather than manually formulate each endpoint's reaction to congestion signals, as in traditional protocols, we developed a program called Remy that generates congestion-control algorithms to run at the endpoints. In this approach, the protocol designer specifies their prior knowledge or assumptions about the network and an objective that the algorithm will try to achieve, e.g., high throughput and low queueing delay. Remy then produces a distributed algorithm---the control rules for the independent endpoints---that tries to achieve this objective. In simulations with ns-2, Remy-generated algorithms outperformed human-designed end-to-end techniques, including TCP Cubic, Compound, and Vegas. In many cases, Remy's algorithms also outperformed methods that require intrusive in-network changes, including XCP and Cubic-over-sfqCoDel (stochastic fair queueing with CoDel for active queue management). Remy can generate algorithms both for networks where some parameters are known tightly a priori , e.g. datacenters, and for networks where prior knowledge is less precise, such as cellular networks. We characterize the sensitivity of the resulting performance to the specificity of the prior knowledge, and the consequences when real-world conditions contradict the assumptions supplied at design-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.