Amine oxidases utilize a proton abstraction mechanism following binding of the amine substrate to the C5 position of the cofactor, the quinone form of trihydroxyphenylalanine (TPQ). Previous work [Wilmot, C. M., et al. (1997) Biochemistry 36, 1608-1620] has shown that Asp383 in Escherichia coliamine oxidase (ECAO) is the catalytic base which performs the key step of proton abstraction. This paper explores in more depth this and other roles of Asp383. The crystal structures of three mutational variants are presented together with their catalytic properties, visible spectra, and binding properties for a substrate-like inhibitor, 2-hydrazinopyridine (2-HP), in comparison to those of the wild type enzyme. In wild type ECAO, the TPQ is located in a wedge-shaped pocket which allows more freedom of movement at the substrate binding position (C5) than for TPQ ring carbons C1-C4. A role of Asp383, whose carboxylate is located close to O5, is to stabilize the TPQ in its major conformation in the pocket. Replacement of Asp383 with the isostructural, but chemically distinct, Asn383 does not affect the location or dynamics of the TPQ cofactor significantly, but eliminates catalytic activity and drastically reduces the affinity for 2-HP. Removal of the side chain carboxyl moiety, as in Ala383, additionally allows the TPQ the greater conformational flexibility to coordinate to the copper, which demonstrates that Asp383 helps maintain the active site structure by preventing TPQ from migrating to the copper. Glu383 has a greatly decreased catalytic activity, as well as a decreased affinity for 2-HP relative to that of wild type ECAO. The electron density reveals that the longer side chain of Glu prevents the pivotal motion of the TPQ by hindering its movement within the wedge-shaped active site pocket. The results show that Asp383 performs multiple roles in the catalytic mechanism of ECAO, not only in acting as the active site base at different stages of the catalytic cycle but also in regulating the mobility of the TPQ that is essential to catalysis.
Copper amine oxidases are homodimeric enzymes that catalyze two reactions: first, a self-processing reaction to generate the 2,4,5-trihydroxyphenylalanine (TPQ) cofactor from an active site tyrosine by a single turnover mechanism; second, the oxidative deamination of primary amine substrates with the production of aldehyde, hydrogen peroxide, and ammonia catalyzed by the mature enzyme. The importance of active site residues in both of these processes has been investigated by structural studies and site-directed mutagenesis in enzymes from various organisms. One conserved residue is a tyrosine, Tyr369 in the Escherichia coli enzyme, whose hydroxyl is hydrogen bonded to the O4 of TPQ. To explore the importance of this site, we have studied a mutant enzyme in which Tyr369 has been mutated to a phenylalanine. We have determined the X-ray crystal structure of this variant enzyme to 2.1 A resolution, which reveals that TPQ adopts a predominant nonproductive conformation in the resting enzyme. Reaction of the enzyme with the irreversible inhibitor 2-hydrazinopyridine (2-HP) reveals differences in the reactivity of Y369F compared with wild type with more efficient formation of an adduct (lambda(max) = 525 nm) perhaps reflecting increased mobility of the TPQ adduct within the active site of Y369F. Titration with 2-HP also reveals that both wild type and Y369F contain one TPQ per monomer, indicating that Tyr369 is not essential for TPQ formation, although we have not measured the rate of TPQ biogenesis. The UV-vis spectrum of the Y369F protein shows a broader peak and red-shifted lambda(max) at 496 nm compared with wild type (480 nm), consistent with an altered electronic structure of TPQ. Steady-state kinetic measurements reveal that Y369F has decreased catalytic activity particularly below pH 6.5 while the K(M) for substrate beta-phenethylamine increases significantly, apparently due to an elevated pK(a) (5.75-6.5) for the catalytic base, Asp383, that should be deprotonated for efficient binding of protonated substrate. At pH 7.0, the K(M) for wild type and Y369F are similar at 1.2 and 1.5 microM, respectively, while k(cat) is decreased from 15 s(-1) in wild type to 0.38 s(-1), resulting in a 50-fold decrease in k(cat)/K(M) for Y369F. Transient kinetics experiments indicate that while the initial stages of enzyme reduction are slower in the variant, these do not represent the rate-limiting step. Previous structural and solution studies have implicated Tyr369 as a component of a proton shuttle from TPQ to dioxygen. The moderate changes in kinetic parameters observed for the Y369F variant indicate that if this is the case, then the absence of the Tyr369 hydroxyl can be compensated for efficiently within the active site.
Copper amine oxidases are homodimeric enzymes containing one Cu(2+) ion and one 2,4,5-trihydroxyphenylalanine quinone (TPQ) per monomer. Previous studies with the copper amine oxidase from Escherichia coli (ECAO) have elucidated the structure of the active site and established the importance in catalysis of an active-site base, Asp-383. To explore the early interactions of substrate with enzyme, we have used tranylcypromine (TCP), a fully reversible competitive inhibitor, with wild-type ECAO and with the active-site base variants D383E and D383N. The formation of an adduct, analogous to the substrate Schiff base, between TCP and the TPQ cofactor in the active site of wild-type ECAO and in the D383E and D383N variants has been investigated over the pH range 5.5-9.4. For the wild-type enzyme, the plot of the binding constant for adduct formation (K(b)) against pH is bell-shaped, indicating two pK(a)s of 5.8 and approximately 8, consistent with the preferred reaction partners being the unprotonated active-site base and the protonated TCP. For the D383N variant, the reaction pathway involving unprotonated base and protonated TCP cannot occur, and binding must follow a less favoured pathway with unprotonated TCP as reactant. Surprisingly, for the D383E variant, the K(b) versus pH behaviour is qualitatively similar to that of D383N, supporting a reaction pathway involving unprotonated TCP. The TCP binding data are consistent with substrate binding data for the wild type and the D383E variant using steady-state kinetics. The results provide strong support for a protonated amine being the preferred substrate for the wild-type enzyme, and emphasize the importance of the active-site base, Asp-383, in the primary binding event.
Adduct I (lambda(max) at approximately 430 nm) formed in the reaction of 2-hydrazinopyridine (2HP) and the TPQ cofactor of wild-type Escherichia coli copper amine oxidase (WT-ECAO) is stable at neutral pH, 25 degrees C, but slowly converts to another spectroscopically distinct species with a lambda(max) at approximately 530 nm (adduct II) at pH 9.1. The conversion was accelerated either by incubation of the reaction mixture at 60 degrees C or by increasing the pH (>13). The active site base mutant forms of ECAO (D383N and D383E) showed spectral changes similar to WT when incubated at 60 degrees C. By contrast, in the Y369F mutant adduct I was not stable at pH 7, 25 degrees C, and gradually converted to adduct II, and this rate of conversion was faster at pH 9. To identify the nature of adduct II, we have studied the effects of pH and divalent cations on the UV-vis and resonance Raman spectroscopic properties of the model compound of adduct I (2). Strikingly, it was found that addition of Cu2+ to 2 at pH 7 gave a product (3) that exhibited almost identical spectroscopic signatures to adduct II. The X-ray crystal structure of 3 shows that it is the copper-coordinated form of 2, where the +2 charge of copper is neutralized by a double deprotonation of 2. These results led to the proposal that adduct II in the enzyme is TPQ-2HP that has migrated onto the active site Cu2+. The X-ray crystal structure of Y369F adduct II confirmed this assignment. Resonance Raman and EPR spectroscopy showed that adduct II in WT-ECAO is identical to that seen in Y369F. This study clearly demonstrates that the hydrogen-bonding interaction between O4 of TPQ and the conserved Tyr (Y369) is important in controlling the position and orientation of TPQ in the catalytic cycle, including optimal orientation for reactivity with substrate amines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.