The surfaces of cells and pathogens are covered with short polymers of sugars known as glycans. Complex N-glycans have a core of three mannose sugars with distal repeats of N-acetylglucosamine and galactose sugars terminating with sialic acid (SA). Long-range tough and short-range brittle self-adhesions were observed between SA and mannose residues, respectively, in ill-defined artificial monolayers. We investigated if and how these adhesions translate when the residues are presented in N-glycan architecture with SA at the surface and mannose at the core and with other glycan sugars. Two pseudotyped viruses with complex N-glycan shields were brought together in force spectroscopy (FS). At higher ramp rates, slime-like adhesions were observed between the shields, whereas Velcro-like adhesions were observed at lower rates. The higher approach rates compress the virus as a whole, and the self-adhesion between the surface SA is sampled. At the lower ramp rates, however, the complex glycan shield is penetrated and adhesion from the mannose core is accessed. The slime-like and Velcro-like adhesions were lost when SA and mannose were cleaved, respectively. While virus self-adhesion in forced contact was modulated by glycan penetrability, the self-aggregation of the freely diffusing virus was only determined by the surface sugar. Mannose-terminal viruses self-aggregated in solution, and SA-terminal ones required Ca2+ ions to self-aggregate. Viruses with galactose or N-acetylglucosamine surfaces did not self-aggregate, irrespective of whether or not a mannose core was present below the N-acetylglucosamine surface. Well-defined rules appear to govern the self-adhesion and -aggregation of N-glycosylated surfaces, regardless of whether the sugars are presented in an ill-defined monolayer, or N-glycan, or even polymer architecture.
The surfaces of cells and pathogens are covered with short polymers of sugars known as glycans.Complex N-glycans have a core of three mannose sugars, with distal repeats of Nacetylglucosamine and galactose sugars terminating with sialic acid (SA). Long-range slime-like and short-range Velcro-like self-adhesions were observed between SA and mannose residues, respectively, in ill-defined monolayers. We investigated if and how these adhesions translate when SA and mannose residues are presented in complex N-glycan shields on two pseudo-typed viruses brought together in force spectroscopy (FS). Slime-like adhesions were observed between the shields at higher ramp rates, whereas Velcro-like adhesions were observed at lower rates. The complex glycan shield appears penetrable at the lower ramp rates allowing the adhesion from the mannose core to be accessed; whereas the whole virus appears compressed at higher rates permitting only surface SA adhesions to be sampled. The slime-like and velcro-like adhesions were lost when SA and mannose, respectively, were cleaved with glycosidases. While virus self-adhesion in FS was modulated by glycan penetrability, virus self-aggregation in solution was only determined by the surface sugar. Mannose-terminal viruses self-aggregated in solution, while SA-terminal ones required Ca 2+ ions to self-aggregate. Viruses with galactose or N-acetylglucosamine surfaces did not self-aggregate, irrespective of whether or not a mannose core was present below the N-acetylglucosamine surface. Well-defined rules appear to govern the self -adhesion and -aggregation of N-glycosylated surfaces, regardless of whether the sugars are presented in ill-defined monolayer, or N-glycan, or even polymer architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.