In this study, two bioinspired computation (BIC) techniques are discussed and applied to the project and synthesis of multilayer frequency selective surfaces (FSS) within the microwave band, specifically for C, X and Ku bands. The proposed BIC techniques consist of combining an artificial, general regression neural network to a genetic algorithm (GA) and a cuckoo search algorithm, respectively. The objective is to find the optimal values of separation between the investigated FSS. Numerical analysis of the electromagnetic properties of the device is made possible with the finite integration method (FIT) and validated through the finite element method (FEM), utilizing both softwares CST Microwave Studio and Ansys HFSS respectively. Thus, the BIC-optimized devices present good phase / angular stability for angles 10°, 20°, 30° and 40°, as well as being polarization independent. The cutoff frequencies to control the operating frequency range of the FSS, referring to transmission coefficient in decibels (dB), were obtained at a threshold of –10dB. Numerical results denote good accordance with measured data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.