Missing values commonly happen in the realm of medical research, which is regarded creating a lot of bias in case it is neglected with poor handling. However, while dealing with such challenges, some standard statistical methods have been already developed and available, yet no credible method is available so far to infer credible estimates. The existing data size gets lowered, apart from a decrease in efficiency happens when missing values is found in a dataset. A number of imputation methods have addressed such challenges in early scholarly works for handling missing values. Some of the regular methods include complete case method, mean imputation method, Last Observation Carried Forward (LOCF) method, Expectation-Maximization (EM) algorithm, and Markov Chain Monte Carlo (MCMC), Mean Imputation (Mean), Hot Deck (HOT), Regression Imputation (Regress), K-nearest neighbor (KNN),K-Mean Clustering, Fuzzy K-Mean Clustering, Support Vector Machine, and Multiple Imputation (MI) method. In the present paper, a simulation study is attempted for carrying out an investigative exploration into the efficacy of the above mentioned archetypal imputation methods along with longitudinal data setting under missing completely at random (MCAR). We took out missingness from three cases in a block having low missingness of 5% as well as higher levels at 30% and 50%. With this simulation study, we concluded LOCF method having more bias than the other methods in most of the situations after carrying out a comparison through simulation study.
<span>The segmented brain tissues from magnetic resonance images (MRI) always pose substantive challenges to the clinical researcher community, especially while making precise estimation of such tissues. In the recent years, advancements in deep learning techniques, more specifically in fully convolution neural networks (FCN) have yielded path breaking results in segmenting brain tumour tissues with pin-point accuracy and precision, much to the relief of clinical physicians and researchers alike. A new hybrid deep learning architecture combining SegNet and U-Net techniques to segment brain tissue is proposed here. Here, a skip connection of the concerned U-Net network was suitably explored. The results indicated optimal multi-scale information generated from the SegNet, which was further exploited to obtain precise tissue boundaries from the brain images. Further, in order to ensure that the segmentation method performed better in conjunction with precisely delineated contours, the output is incorporated as the level set layer in the deep learning network. The proposed method primarily focused on analysing brain tumor segmentation (BraTS) 2017 and BraTS 2018, dedicated datasets dealing with MRI brain tumour. The results clearly indicate better performance in segmenting brain tumours than existing ones.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.