Alteration in the glycosaminoglycan hyaluronan (HA) has been demonstrated in numerous renal diseases. We have demonstrated that renal proximal tubular epithelial cells (PTCs) surround themselves in vitro with HA in an organized pericellular matrix or 'coat', which is associated with cell migration, and also form pericellular HA cable-like structures which modulate PTC-mononuclear leukocytes interactions. The aim of this study was to characterize potential regulatory mechanism in the assembly of PTC-HA into pericellular cables. HA cables are generated by PTCs in the absence of serum. Immunohistochemical analysis demonstrates the incorporation of components of the inter-alpha-inhibitor (IalphaI) family of proteins and versican into HA cables. Addition of an antibody to IalphaI/PalphaI (pre-alpha-inhibitor) inhibits cable formation. In contrast, inhibition of tumor necrosis factor-alpha-stimulated gene 6 (TSG-6) has no effect on cable formation, suggesting that their generation is independent of the known heavy-chain transfer activity of TSG-6. Overexpression of HAS3 is associated with induction of HA cable formation, and also increased incorporation of HA into pericellular coats. Functionally, this resulted in enhanced HA-dependent monocyte binding and cell migration, respectively. Cell surface expression of CD44 and trypsin-released cell-associated HA were increased in HAS3-overexpressing cells. In addition, hyaluronidase (hyal1 and hyal2) and bikunin mRNA expression were increased, whereas PalphaI HC3 mRNA expression was unchanged in the transfected cells. The data demonstrate the importance of IalphaI/PalphaI in cable formation and suggest that expression of HAS3 may be critical for HA cable assembly.
The functional consequences of increased renal cortical hyaluronan that is associated with both acute injury and progressive scarring are unclear. The aim of this study was to characterize hyaluronan synthase-2 (HAS2)-driven HA synthesis and determine its effect on renal proximal tubular epithelial cell (PTC) function, because this is known to be the inducible form of HA synthase in this cell type. Overexpression of HAS2 mRNA increased HA generation, which in the supernatant predominantly was HA of large molecular weight, whereas there was an increase in low molecular weight HA in cellassociated fractions. This was associated with increased expression of hyaluronidases, inhibition of HA cable formation concurrent with reduction in HA-dependent monocyte binding, and increased pericellular HA matrix. Overexpression of HAS2 led to enhanced cell migration. HA can be modified by the covalent attachment of heavy chains that are derived from the serum protein inter-␣-inhibitor (I␣I), a process that is known to be catalyzed by TNF-␣-stimulated gene 6 (TSG-6; an inflammation-associated protein). Enhanced migration was abrogated by blocking antibodies to either I␣I or TSG-6. Addition of recombinant full-length TSG-6 (TSG-6Q) or TSG-6Q_Y94F, a mutant variant with impaired HA binding, increased cell migration. Both of these proteins were able to mediate the covalent transfer of heavy chains, from I␣I and pre-␣-inhibitor, onto HA. Addition of the isolated TSG-6 -Link module (Link_TSG-6), which binds HA but is unable to form covalent complexes with I␣I/pre-␣-inhibitor, had no effect on migration, suggesting that TSG-6 -mediated formation of heavy chain-HA complexes is critical in the formation of a pericellular HA matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.