Total knee replacement is a standard surgical treatment used to treat osteoarthritis in the knee. The implant is complicated, requiring expensive designs and testing as well as a surgical intervention. This research proposes a technique concerning the optimal conformity design of the symmetric polyethylene tibial insert component for fixed-bearing total knee arthroplasty. The Latin Hypercube Sampling (LHS) design of the experiment was used to create 30 cases of the varied tibial insert conformity that influenced the total knee replacement wear volume. The combination of finite element analysis and a surrogate model was performed to predict wear volume according to the standard of ISO-14243:2014 wear test and to determine the optimal conformity. In the first step, the results could predict wear volume between 5.50 to 72.92 mm3/106 cycle. The Kriging method of a surrogate model has then created the increased design based on the efficient global optimization (EGO) method with improving data 10 design points. The result revealed that the optimum design of tibial insert conformity in a coronal and sagittal plane was 0.70 and 0.59, respectively, with a minimizing wear volume of 3.07 mm3/106 cycle. The verification results revealed that the area surface scrape and wear volume are similar to those predicted by the experiment. The wear behavior on the tibial insert surface was asymmetry of both sides. From this study it can be concluded that the optimal conformity design of the tibial insert component can be by using a finite element and surrogate model combined with the design of conformity to the minimized wear volume.
In this paper, a comparative study of total knee arthroplasty (TKA) between fixed-and mobile-bearing implants is presented. Reverse engineering techniques including finite element analysis were used to evaluate the mechanical characteristics in terms of the stress distribution. A virtually bearing load based on four different stages of gait cycle (0 o to 60 o flexion) was performed. The maximum contact pressure and contact area of tibial inserted component were evaluated. According to the results, the magnitude of maximum contact pressure in fixed-bearing implant increased significantly when compared to a mobile-bearing implant from 0 o to 60 o flexion. The contact area of mobile-bearing implant tended to decreased from 0 o to 60 o flexion of gait cycle. However, the contact area of the tibial inserted component in a mobile-bearing implant was significantly higher than those of a fixed-bearing implant. The body bearing weight had less influence on the maximum contact pressure as well as contact area in the mobile-bearing implant than fixed-bearing implant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.