An enhanced method able to perform accurate stability of constrained uncertain systems is presented. The main objective of this method is to compute a sequence of feedback control laws which stabilizes the closed-loop system. The proposed approach is based on robust model predictive control (RMPC) and enhanced maximized sets algorithm (EMSA), which are applied to improve the performance of the closed-loop system and achieve less conservative results. In fact, the proposed approach is split into two parts. The first is a method of enhanced maximized ellipsoidal invariant sets (EMES) based on a semidefinite programming problem. The second is an enhanced maximized polyhedral set (EMPS) which consists of appending new vertices to their convex hull to minimize the distance between each new vertex and the polyhedral set vertices to ensure state constraints. Simulation results on two examples, an uncertain nonisothermal CSTR and an angular positioning system, demonstrate the effectiveness of the proposed methodology when compared to other works related to a similar subject. According to the performance evaluation, we recorded higher feedback gain provided by smallest maximized invariant sets compared to recently studied methods, which shows the best region of stability. Therefore, the proposed algorithm can achieve less conservative results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.