The ever-growing usage of knowledge graphs (KGs) positions named entity disambiguation (NED) at the heart of designing accurate KG-driven systems such as query answering systems (QAS). According to the current research, most studies dealing with NED on KGs involve long texts, which is not the case of short text fragments, identified by their limited contexts. The accuracy of QASs strongly depends on the management of such short text. This limitation motivates this paper, which studies the NED problem on KGs, involving only short texts. First, we propose a NED approach including the following steps: (i) context expansion using WordNet to measure its similarity to the resource context. (ii) Exploiting coherence between entities in queries that contain more than one entity, such as “Is Michelle Obama the wife of Barack Obama?”. (iii) Taking into account the relations between words to calculate their similarity with the properties of a resource. (iv) the use of syntactic features. The NED solution approach is compared to state-of-the-art approaches using five datasets. The experimental results show that our approach outperforms these systems by 27% in the F-measure. A system called
Welink
, implementing our proposal, is available on GitHub, and it is also accessible via a REST API.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.