With the current trend of increasing efforts to develop non-isocyanate-based polyurethanes (NIPUs), this study aimed to check the feasibility of the development of a method using cyclic carbonate modified catechin and amine to synthesis non-isocyanate urethane with the objective to further extend these results to polyurethane synthesis. The methods used in this study consist of four steps: glycidilation of catechin, hydrolysis of epoxide, cyclic carbonate synthesis, and carbamate synthesis through condensation of butylamine. The resulting products were analyzed using FTIR (Fourier transform infrared) spectroscopy and NMR (nuclear magnetic resonance) spectroscopy. The results showed that carbamate could be successfully obtained through this four-steps synthesis, opening the possibility to further developments for the synthesis of polyurethanes starting from catechin and condensed tannins.
This study evaluated the methods of grafting commercial catechin with fatty acids, namely capric acid (C10), lauric acid (C12), and myristic acid (C14) through esterification. Specimens of beech wood (Fagus sylvatica L.) were impregnated with catechin and modified catechin-fatty acids, separately, at a 5% concentration diluted in ethanol using vacuum pressure treatment and subjected to leaching. The weight percentage gain before leaching (WPG), after leaching (WPGAL), and weight loss due to leaching (PL) were investigated. Both leached and unleached samples were tested against white-rot fungi (Trametes versicolor) in Petri-dishes for twelve weeks. Results show that samples treated with modified catechin-fatty acids provide improved resistance towards leaching. Catechin-C14 was found to be more promising, possibly due to its chain length. The decay weight loss for samples treated with modified catechin-fatty acids does not differ significantly between the samples that leached and not. Despite the antifungal properties of catechin, the treatment with catechin alone was insufficient to protect wood samples from fungi. Further, it is recommended to increase the concentration level of modified catechin to obtain a significant effect on the decay resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.