The boom seen in artificial intelligence in recent years has led to a revolution in the automotive industry. Numerous automakers around the world, such as Tesla, Toyota, Honda, and BMW, have achieved giant strides in the development of e-autonomous vehicles. Consequently, shared electric automated vehicle mobility (SEAVM) systems, which are a crucial part of future innovative transportation solutions, have attracted significant attention from the research community, particularly from a design perspective. However, the flexibility of shared automated mobility systems may lead to a self-operating technology issue (unequal distribution of vehicles), since users in these systems can pick up and drop off electric vehicles wherever they like. With this in mind, this paper addressed the issues of autonomous repositioning and the assignment of shared autonomous electric vehicle systems to balance a system’s network and fulfill its demand. Modeling, analysis and assessment of the system’s performance were carried out using stochastic Petri nets formalism, which included determining the average time areas were empty/congested and the number of unserved consumers, and estimating the redistribution service launch moment. Furthermore, many simulation scenarios were analyzed, including repositioning and without repositioning scenarios, in order to evaluate the efficiency of the model and to show the potential of using Petri nets as a probabilistic formalism approach for the modeling of e-automated mobility systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.