The carbon-free energy systems such as nuclear can benefit from compact and highly efficient heat exchanger technologies. The plate-type compact heat exchangers such as the Printed Circuit Heat Exchanger (PCHE) holds promise to fulfil these requirements. This work presents the thermal-hydraulic and structural analysis of PCHE for molten salt applications with thermal energy storage. In this study, three different typess of geometry are chosen for the analysis i.e., the zigzag channel type, the airfoil fin type, and the slotted fin type. For the working fluid, FLiBe (Li2BeF4) and Solar Salt (60% NaNO3 and 40% KNO3) are chosen for hot side and cold side respectively. Titanium grade 5 is chosen as the structural material. The study is conducted by Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) analysis. The thermomechanical behavior including pressure drop, fluid temperature, velocity profile, stress, and deformation of the flow channel are considered in this work. From the results, the zigzag channel geometry gives the best thermal hydraulic performance in terms of heat transfer and pressure drop. The structural analysis shows that the stress intensity has an exponential growth with power generation level with zigzag channel geometry being the highest out of the three geometries. Overall, the zigzag channel PCHE is still the most suitable geometry for this application. However, zigzag channel geometry should be substituted with an alternative geometry for higher power applications e.g., airfoil-fin and slotted-fin geometries because they yield noticeably lower stress intensity.
Climate change has garnered attention of communities world-wide. The carbon-free thermal energy systems such as nuclear benefit from compact and highly efficient heat exchanger technologies. The plate-type compact heat exchangers such as the Printed Circuit Heat Exchanger (PCHE) holds promise to fulfil these requirements. The chemical etching and diffusion bonding technology expands PCHE application for several different nuclear technologies. This work presents the thermal-hydraulic and structural analysis of PCHE for molten salt application with thermal energy storage. In this study, three different types of geometry are chosen for the analysis i.e., the zigzag channel type, the airfoil fin type, and the slotted fin type. For the working fluid, FLiBe (Li2BeF4) and Solar Salt (60% NaNO3 and 40% KNO3) are chosen for hot side and cold side respectively. Titanium grade 5 is chosen as the structural material. The study is conducted by Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) analysis. The thermomechanical behavior including pressure drop, fluid temperature, velocity profile, stress, and deformation of the flow channel were considered in this work. From the results, the zigzag channel geometry gives the best thermal hydraulic performance in terms of heat transfer and pressure drop. The structural analysis shows that the stress intensity of all three geometries can exceed the maximum allowable stress (MAS) under certain conditions. Overall, the zigzag channel PCHE is still the most suitable geometry for this application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.