[1] Annual peak discharge records from 50 stations in the continental United States with at least 100 years of record are used to investigate stationarity of flood peaks during the 20th century. We examine temporal trends in flood peaks and abrupt changes in the mean and/or variance of flood peak distributions. Change point analysis for detecting abrupt changes in flood distributions is performed using the nonparametric Pettitt test. Two nonparametric (Mann-Kendall and Spearman) tests and one parametric (Pearson) test are used to detect the presence of temporal trends. Generalized additive models for location, scale, and shape (GAMLSS) are also used to parametrically model the annual peak data, exploiting their flexibility to account for abrupt changes and temporal trends in the parameters of the distribution functions. Additionally, the presence of long-term persistence is investigated through estimation of the Hurst exponent, and an alternative interpretation of the results in terms of long-term persistence is provided. Many of the drainage basins represented in this study have been affected by regulation through systems of reservoirs, and all of the drainage basins have experienced significant land use changes during the 20th century. Despite the profound changes that have occurred to drainage basins throughout the continental United States and the recognition that elements of the hydrologic cycle are being altered by human-induced climate change, it is easier to proclaim the demise of stationarity of flood peaks than to prove it through analyses of annual flood peak data.
[1] Rain gauge networks provide rainfall measurements with a high degree of accuracy at specific locations but, in most cases, the instruments are too sparsely distributed to accurately capture the high spatial and temporal variability of precipitation systems. Radar and satellite remote sensing of rainfall has become a viable approach to address this problem effectively. However, among other sources of uncertainties, the remote-sensing based rainfall products are unavoidably affected by sampling errors that need to be evaluated and characterized. Using a large data set (more than six years) of rainfall measurements from a dense network of 50 rain gauges deployed over an area of about 135 km 2 in the Brue catchment (south-western England), this study sheds some light on the temporal and spatial sampling uncertainties: the former are defined as the errors resulting from temporal gaps in rainfall observations, while the latter as the uncertainties due to the approximation of an areal estimate using point measurements. It is shown that the temporal sampling uncertainties increase with the sampling interval according to a scaling law and decrease with increasing averaging area with no strong dependence on local orography. On the other hand, the spatial sampling uncertainties tend to decrease for increasing accumulation time, with no strong dependence on location of the gauge within the pixel or on the gauge elevation. For the evaluation of high resolution satellite rainfall products, a simple rule is proposed for the number of rain gauges required to estimate areal rainfall with a prescribed accuracy. Additionally, a description is given of the characteristics of the rainfall process in the area in terms of spatial correlation.
Although it is broadly acknowledged that the radar-rainfall (RR) estimates based on the U.S. national network of Weather Surveillance Radar-1988 Doppler (WSR-88D) stations contain a high degree of uncertainty, no methods currently exist to inform users about its quantitative characteristics. The most comprehensive characterization of this uncertainty can be achieved by delivering the products in a probabilistic rather than the traditional deterministic form. The authors are developing a methodology for probabilistic quantitative precipitation estimation (PQPE) based on weather radar data. In this study, they present the central element of this methodology: an empirically based error structure model for the RR products.The authors apply a product-error-driven (PED) approach to obtain a realistic uncertainty model. It is based on the analyses of six years of data from the Oklahoma City, Oklahoma, WSR-88D radar (KTLX) processed with the Precipitation Processing System algorithm of the NEXRAD system. The modeled functional-statistical relationship between RR estimates and corresponding true rainfall consists of two components: a systematic distortion function and a stochastic factor quantifying remaining random errors. The two components are identified using a nonparametric functional estimation apparatus. The true rainfall is approximated with rain gauge data from the Oklahoma Mesonet and the U.S. Department of Agriculture (USDA) Agricultural Research Service Micronet networks. The RR uncertainty model presented here accounts for different time scales, synoptic regimes, and distances from the radar. In addition, this study marks the first time in which results on RR error correlation in space and time are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.