Dual-mode MRI contrast agents consisting of superparamagnetic iron oxide nanoparticle (SPION) cores and gadolinium ions associated with the ionic chitosan protecting layer were synthesized and studied. Gadolinium ions were introduced into the coating layer via direct complex formation on the nanoparticles surface, covalent attachment or electrostatically driven deposition of the preformed Gd complex. The modified SPIONs having hydrodynamic diameters ca. 100 nm form stable, well-defined dispersions in water and have excellent magnetic properties. Physiochemical properties of those new materials were characterized using e.g., FTIR spectroscopy, dynamic light scattering, X-ray fluorescence, TEM, and vibrating sample magnetometry. They behave as superparamagnetics and shorten both T1 and T2 proton relaxation times, thus influencing both r1 and r2 relaxivity values that reach 53.7 and 375.5 mM−1 s−1, respectively, at 15 MHz. The obtained materials can be considered as highly effective contrast agents for low-field MRI, particularly useful at permanent magnet-based scanners.
Successful one-step manufacturing of micro-foils of NiTi shape memory compound by pulsed-current sintering of nickel and titanium is reported. Sandwich-like starting configurations of Ni/Ti/Ni (ST1, ST4), Ti/Ni/Ti (ST3), and a simple Ni/Ti (ST2) one, were used. XRD and differential scanning calorimetry (DSC) measurements revealed multistep martensitic transformation, much more pronounced for ST1 than for ST2 and ST3. SEM/energy dispersive X-ray spectrometer (EDS) measurements showed the predominant NiTi phase in ST1, ST4, and other intermetallic compounds in addition to it, for ST2 and ST3. The temperature dependence of the electrical resistance for ST4 shows a peak corresponding to the R-phase and a high residual resistivity. The shape memory effect of 100% was obtained for ST1 and ST4, with the temperature range of its recovery dependent on the initial strain. The ST2 and ST3 materials revealed brittleness and a lack of plasticity due to the dominancy of the austenite phase and/or the intermetallic compound content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.