Quasicrystalline alloys and their composites have been extensively studied due to their complex atomic structures, mechanical properties, and their unique tribological and thermal behaviors. However, technological applications of these materials have not yet come of age and still require additional developments. In this review, we discuss the recent advances that have been made in the last years toward optimizing fabrication processes and properties of Al‐matrix composites reinforced with quasicrystals. We discuss in detail the high‐strength rapid‐solidified nanoquasicrystalline composites, the challenges involved in their manufacturing processes and their properties. We also bring the latest findings on the fabrication of Al‐matrix composites reinforced with quasicrystals by powder metallurgy and by conventional metallurgical processes. We show that substantial developments were made over the last decade and discuss possible future studies that may result from these recent findings.
A structural and mechanical characterization of pure aluminum and 2124 T6 aluminum alloy reinforced with quasicrystalline phases of composition Al 65 Cu 20 Fe 15 and Al 70.5 Pd 21 Mn 8.5 (%at.) were performed. The quasicrystalline phases were synthesized by arc melting and then milled to produce powder of the alloys, which were then mechanical mixed with the starting powders of aluminum and 2124 aluminum alloy. The composites were produced by hot extrusion of a mechanical mixture containing 20% (%wt.) of the reinforcing phases on the metallic matrix. The structural characterization of the composites was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Mechanical characterization was carried out by Vickers hardness measurements and torsion tests at room temperature. The pure aluminum/quasicrystal composite showed the presence of the same phases from the starting powder mixture while for the 2124 aluminum alloy/Al 65 Cu 20 Fe 15 the quasicrystalline phase transformed to the tetragonal ω-Al 7 Cu 2 Fe during the solution heat treatment. Mechanical strength of the composites presented a substantial increase in comparison to the original matrix metal. While the equivalent ultimate tensile strength of the Al/quasicrystal composites reached values up to 215MPa and Vickers hardness up to 60HV, the 2124/quasicrystal composites reached values up to 670MPa and Vickers hardness up to 190HV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.