Most natural populations are affected by seasonal changes in temperature, rainfall, or resource availability. Seasonally fluctuating selection could potentially make a large contribution to maintaining genetic polymorphism in populations. However, previous theory suggests that the conditions for multi-locus polymorphism are restrictive. Here we explore a more general class of models with multi-locus seasonally fluctuating selection in diploids.In these models, loci first contribute additively to a seasonal score, with a dominance parameter determining the relative contributions of heterozygous and homozygous loci. The seasonal score is then mapped to fitness via a monotonically increasing function, thereby accounting for epistasis. Using mathematical analysis and individual-based simulations, we show that stable polymorphism at many loci is possible if currently favored alleles are sufficiently dominant with respect to the additive seasonal score (but not necessarily with respect to fitness itself). This general mechanism, which we call "segregation lift", operates for various genotype-to-fitness maps and includes the previously known mechanism of multiplicative selection with marginal overdominance as a special case. We show that segregation lift may arise naturally in situations with antagonistic pleiotropy and 1 not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/115444 doi: bioRxiv preprint first posted online Mar. 9, 2017; seasonal changes in the relative importance of traits for fitness. Segregation lift is not affected by problems of genetic load and is robust to differences in parameters across loci and seasons. Under segregation lift, loci can exhibit conspicuous seasonal allele-frequency fluctuations, but often fluctuations may also be small and hard to detect. Via segregation lift, seasonally fluctuating selection might contribute substantially to maintaining genetic variation in natural populations.Keywords temporal heterogeneity | cyclical selection | maintenance of genetic diversity | marginal overdominance | balancing selection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.