Background n-Butyraldehyde is a high-production volume chemical produced exclusively from hydroformylation of propylene. It is a versatile chemical used in the synthesis of diverse C4–C8 alcohols, carboxylic acids, esters, and amines. Its high demand and broad applications make it an ideal chemical to be produced from biomass.ResultsAn Escherichia coli strain was engineered to produce n-butyraldehyde directly from glucose by expressing a modified Clostridium CoA-dependent n-butanol production pathway with mono-functional Coenzyme A-acylating aldehyde dehydrogenase (Aldh) instead of the natural bifunctional aldehyde/alcohol dehydrogenase. Aldh from Clostridium beijerinckii outperformed the other tested homologues. However, the presence of native alcohol dehydrogenase led to spontaneous conversion of n-butyraldehyde to n-butanol. This problem was addressed by knocking out native E. coli alcohol dehydrogenases, significantly improving the butyraldehyde-to-butanol ratio. This ratio was further increased reducing media complexity from Terrific broth to M9 media containing 2% yeast extract. To increase production titer, in situ liquid–liquid extraction using dodecane and oleyl alcohol was investigated. Results showed oleyl alcohol as a better extractant, increasing the titer of n-butyraldehyde produced to 630 mg/L.ConclusionThis study demonstrated n-butyraldehyde production from glucose. Through sequential strain and condition optimizations, butyraldehyde-to-butanol ratio was improved significantly compared to the parent strain. Results from this work may serve as a basis for further development of renewable n-butyraldehyde production.Electronic supplementary materialThe online version of this article (10.1186/s13068-017-0978-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.