In the literature, typical analytical track response models are composed of beams (which represent the rail) on viscoelastic or elastic foundations. The load is usually considered as a single concentrated force (constant or varying in time) moving with constant speed. Concentrated or distributed loads or multilayer track models have rarely been considered. One can find some interesting results concerning analysis of distributed loads and multilayer track structures that include both analytical and numerical approaches. However, there is a noticeable lack of sufficient comparison between track responses under concentrated or distributed load and between one and multilayer track models. One of the unique features of the present paper is a comparison of data obtained for a series of concentrated and distributed loads, which takes into account a wide range of track parameters and train speeds. One of the fundamental questions associated with the multilayer track model is the level of coupling between the rail and the vibrations of the sleepers. In this paper, it is proved that sleepers are weakly coupled with the rail if the track is without significant imperfections, and the steady-state response is analyzed for this case. In other words, sleeper vibrations do not influence the rail vibrations significantly. Therefore the track is analyzed by means of a two-stage model. The first step of this model determines rail vibration under a moving load, and then the sleeper vibration is calculated from previously obtained kinematic excitation. The model is verified by comparison of the obtained results with experimental data. Techniques based on Fourier series are applied to the solution of the steady-state track response. Another important problem associated with track response under moving loads arises from the analysis of the effect of longitudinal forces in rails on vertical displacement. It is shown that, in the case of the steady-state response, longitudinal forces do not influence rail displacements significantly and this observation remains correct for a wide range of track parameters and train speeds. The paper also analyzes the legitimacy of the statement that additional rail deflection between sleepers, compared to the continuous rail support, can be considered as a track imperfection.
The paper is devoted to the study of dynamical behaviour of railway tracks as continuous systems (rails) supported by periodically spaced sleepers and subjected to moving concentrated loads. Several cases of dynamical problems, where elastically supported beams are excited by a moving concentrated force, are considered. In particular, the study is focused on interactions with structure periodic in the space. Results on one-dimensional structures are extended to the case of a two-dimensional system. The problems of stopping bands, passing bands, and mistuning are also mentioned.
The paper tries to clarify the problem of solution and interpretation of railway track dynamics equations for linear models. Set of theorems is introduced in the paper describing two types of equivalence: between static and dynamic track response under moving load and between the dynamic response of track described by both the Euler-Bernoulli and Timoshenko beams. The equivalence is clarified in terms of mathematical method of solution. It is shown that inertia element of rail equation for the Euler-Bernoulli beam and constant distributed load can be considered as a substitute axial force multiplied by second derivative of displacement. Damping properties can be treated as additional substitute load in the static case taking into account this substitute axial force. When one considers the Timoshenko beam, the substitute axial force depends additionally on shear properties of rail section, rail bending stiffness, and subgrade stiffness. It is also proved that Timoshenko beam, described by a single equation, from the point of view of solution, is an analogy of the Euler-Bernoulli beam for both constant and variable load. Certain numerical examples are presented and practical interpretation of proved theorems is shown.
Certain analytical elastic solution for curvilinear track section under uniform thermal loading has been proposed. Track section is composed of circular arc, transition curves and straight lines. Next step is the analysis of two-dimensional model of the track structure (stress plane, without vertical direction). The rails and the sleepers are assumed as elastic bodies. The fasteners and ballast are modeled as elastic-plastic elements. Non-linear properties of these elements are determined by comparison of numerical data with experimental results. Cyclic uniform thermal field is applied as the load of the system. Pre-buckling analysis is the basic part of the considerations. Certain remarks on the track stability, based on the previous author analyses, are also presented. It is shown that track structure with Y-shaped steel sleepers gives the possibility to use of continuous welded rail (CWR) track practically in any radius of curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.