The passive, ambient sound above the water from a river has previously untapped potential for determining flow characteristics such as stage. Measuring sub-aerial sound could provide a new, efficient way to continuously monitor river stage, without the need for in-stream infrastructure. Previous published work has suggested that there might be a relationship between sound and river stage, but the analysis has been restricted to a narrow range of flow conditions and river morphologies. We present a method to determine site suitability and the process of how to record and analyse sound. Data collected along a 500 m length of the River Washburn during July 2019 is used to determine what makes a site suitable for sound monitoring. We found that sound is controlled by roughness elements in the channel, such as a boulder or weir, which influences the sound produced. On the basis of these findings, we collect audio recordings from six sites around the northeast of England, covering a range of flow conditions and different roughness elements, since 2019. We use data from those sites collected during storms Ciara and Dennis to produce a relationship between this sound and river stage. Our analysis has shown a positive relationship between an R 2 of 0.73 and 0.99 in all rivers, but requires careful site selection and data processing to achieve the best results. We introduce a filter that is capable of isolating a river's sound from other environmental sound. Future work in examining the role of these roughness elements is required to understand the full extent of this technique. By demonstrating that sound can operate as a hydrometric tool, we suggest that sound monitoring could be used to provide cost-effective monitoring devices, either to detect relative change in a river or, after more research, a reliable stage measurement.
Rivers can be variable, noisy environments, able to change from a babbling brook to a thunderous torrent. There is evidence to suggest that the flow controls the range of sounds produced by a river, including seismic (ground vibrations), hydroacoustic (underwater), infrasonic (sub-aerially at < 20 Hz), and human-audible acoustics (sub-aerially at 20
<p>Splosh, gurgle, burble are all terms that can be used to describe how a river sounds as we stand on the bank. We have developed a new approach that uses the passive sound generated by a river, to gauge the current stage of the river, and generate (sono)hydrographs from the safety of the river bank. Our approach offers a cost-effective, power-efficient and flexible means to install flood monitors. We have developed a method of how to take the sound from around a river and translate it into a useful gauging tool without the need to listen to individual recordings. Using an internet of things approach we have developed a system of sound monitors that can be placed anywhere in the vicinity of a river. We aim to target the lesser studied parts of a river catchment, the headwaters, which are often data scarce environments. These environments are an opportunity to identify the real time responses of sub-catchments. The ultimate goal of our research is to enable community level flood monitoring, in areas that may be susceptible to river flooding, but are not yet actively gauged.</p><p>&#160;</p><p>We hypothesise that the sound generated by a river is a direct response to the obstacles found within the channel and the turbulence they cause. Sound is generated by the increase of energy available in the channel, being transformed into sound energy through turbulence generating structures, i.e. boulders. Data gathered over a winter season from several rivers in the North East of England, during Storm Ciara and Dennis, has shown sound to be a reliable method for determining rapid changes in river stage and is comparable to what the official Environment Agency gauges measured. Through an innovative approach, we have begun to understand the limits on sound data and the calibration of sound to the channel properties. Utilising a 7.5 m wide flume at a white water course we have recreated controlled environments and simulated different discharges and their effect on sound.</p><p>&#160;</p><p>Overall, we have found that sound is an opportunity to be taken to measure river stage in areas that are seldom studied. We have identified that sound works during extreme conditions, and being placed on the banks of the channel our monitors have a lower risk of being damaged during storm events and are easy and safe to install. We present the first means of using sound from a river to actively gauge a river and the full workflow from collection, analysis and dissemination of results.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.