The steel presents a wide field of application. The abrasive wear resistance of steel relies mainly on the microstructure, hardness as well as on the abrasive material properties. Moreover, the selection of a abrasion-resistant grade of steel still seems to be a crucial and unsolved problem, especially due to the fact that the actual operating conditions can be affected by the presence of different abrasive materials. The aim of this work was to determine the effect of different abrasive grit materials i.e. garnet, corundum and carborundum on the abrasive wear result of a commonly used in industry practice steels i.e. S235, S355, C45, AISI 304 and Hardox 500. The microstructure of the steel was investigated using light optical microscopy. Moreover, hardness was measured with Vickers hardness tester. Additionally, the size and morphology of the abrasive materials were characterized. The abrasion tests were conducted with the usage of T-07 tribotester (dry sand rubber wheel). The results demonstrate that the hardness and structure of steels and hardness of abrasive grids influenced the wear results. The abrasive wear behavior of steels was dominated by microscratching and microcutting wear mechanisms. The highest mass loss was obtained for garnet, corundum, and carborundum, respectively. The usage of various abrasives results in different abrasion resistance for each tested steel grade. The AISI 304 austenitic stainless steel presents an outstanding abrasive wear resistance while usage of corundum and Hardox 500 while using a garnet as abrasive material. The C45 carbon steel was less resistant than AISI 304 for all three examined abrasives. The lowest resistance to wear in garnet and carborundum was obtained for the S235JR and S355J2 ferritic-perlitic carbon steels and in corundum for Hardox 500 which has tempered martensitic structure.
Post-mortem characterisation is a pivotal tool to trace back to the origin of structural failures in modern engineering analyses. This work compared both the crack propagation and rupture roughness profiles based on areal parameters for total fracture area. Notched and smooth samples made of weather-resistant structural steel (10HNAP), popular S355J2 structural steel and aluminium alloy AW-2017A under bending, torsion and combined bending–torsion were investigated. After the fatigue tests, fatigue fractures were measured with an optical profilometer, and the relevant surface parameters were critically compared. The results showed a great impact of the loading scenario on both the local profiles and total fracture areas. Both approaches (local and total fracture zones) for specimens with different geometries were investigated. For all specimens, measured texture parameters decreased in the following order: total area, rupture area and propagation area.
Metal foams are considered as promising catalyst carriers due to their high porosity, large specific surface area, and satisfactory thermal and mechanical stability. The study presents heat transfer and pressure drop experiments performed for seven foams of different pore densities made from diverse metals. Mass transfer characteristics are derived using the Chilton–Colburn analogy. It was found that the foams display much more intense heat/mass transfer than a monolith, comparable to packed bed. Next, the foams’ efficiencies have been compared, using 1D reactor modeling, in catalytic reactions displaying either slower (selective catalytic reduction of NOx) or faster kinetics (catalytic methane combustion). For the slow kinetics, the influence of carrier specific surface area at which catalyst can be deposited (i.e., catalyst amount) was decisive to achieve high process conversion and short reactor. For this case, monolith appears as the best choice assuming it’s the lowest pressure drop. For the fast reaction, the mass transfer becomes the limiting parameter, thus solid foams are the best solution.
From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work investigates the effect of nitrogen ion implantation (NII) of HIPed Stellite 6 on the improvement of resistance to CE. Finally, the cobalt-rich matrix phase transformations due to both NII and cavitation load were studied. The CE resistance of stellites ion-implanted by 120 keV N+ ions two fluences: 5 × 1016 cm−2 and 1 × 1017 cm−2 were comparatively analysed with the unimplanted stellite and AISI 304 stainless steel. CE tests were conducted according to ASTM G32 with stationary specimen method. Erosion rate curves and mean depth of erosion confirm that the nitrogen-implanted HIPed Stellite 6 two times exceeds the resistance to CE than unimplanted stellite, and has almost ten times higher CE reference than stainless steel. The X-ray diffraction (XRD) confirms that NII of HIPed Stellite 6 favours transformation of the ε(hcp) to γ(fcc) structure. Unimplanted stellite ε-rich matrix is less prone to plastic deformation than γ and consequently, increase of γ phase effectively holds carbides in cobalt matrix and prevents Cr7C3 debonding. This phenomenon elongates three times the CE incubation stage, slows erosion rate and mitigates the material loss. Metastable γ structure formed by ion implantation consumes the cavitation load for work-hardening and γ → ε martensitic transformation. In further CE stages, phases transform as for unimplanted alloy namely, the cavitation-inducted recovery process, removal of strain, dislocations resulting in increase of γ phase. The CE mechanism was investigated using a surface profilometer, atomic force microscopy, SEM-EDS and XRD. HIPed Stellite 6 wear behaviour relies on the plastic deformation of cobalt matrix, starting at Cr7C3/matrix interfaces. Once the Cr7C3 particles lose from the matrix restrain, they debond from matrix and are removed from the material. Carbides detachment creates cavitation pits which initiate cracks propagation through cobalt matrix, that leads to loss of matrix phase and as a result the CE proceeds with a detachment of massive chunk of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.