This paper presents the optimization of the inverse distance weighting method (IDW) in the process of creating a digital terrain model (DTM) of the seabed based on bathymetric data collected using a multibeam echosounder (MBES). There are many different methods for processing irregular measurement data into a grid-based DTM, and the most popular of these methods are inverse distance weighting (IDW), nearest neighbour (NN), moving average (MA) and kriging (K). Kriging is often considered one of the best methods in interpolation of heterogeneous spatial data, but its use is burdened by a significantly long calculation time. In contrast, the MA method is the fastest, but the calculated models are less accurate. Between them is the IDW method, which gives satisfactory accuracy with a reasonable calculation time. In this study, the author optimized the IDW method used in the process of creating a DTM seabed based on measurement points from MBES. The goal of this optimization was to significantly accelerate the calculations, with a possible additional increase in the accuracy of the created model. Several variants of IDW methods were analysed (dependent on the search radius, number of points in the interpolation, power of the interpolation and applied smoothing method). Finally, the author proposed an optimization of the IDW method, which uses a new technique of choosing the nearest points during the interpolation process (named the growing radius). The experiments presented in the paper and the results obtained show the true potential of the IDW optimized method in the case of DTM estimation.
The paper presents an optimized method of digital terrain model (DTM) estimation based on modified kriging interpolation. Many methods are used for digital terrain model creation; the most popular methods are: inverse distance weighing, nearest neighbour, moving average, and kriging. The latter is often considered to be one of the best methods for interpolation of non-uniform spatial data, but the good results with respect to model’s accuracy come at the price of very long computational time. In this study, the optimization of the kriging method was performed for the purpose of seabed DTM creation based on millions of measurement points obtained from a multibeam echosounder device (MBES). The purpose of the optimization was to significantly decrease computation time, while maintaining the highest possible accuracy of created model. Several variants of kriging method were analysed (depending on search radius, minimum of required points, fixed number of points, and used smoothing method). The analysis resulted in a proposed optimization of the kriging method, utilizing a new technique of neighbouring points selection throughout the interpolation process (named “growing radius”). Experimental results proved the new kriging method to have significant advantages when applied to DTM estimation.
Modern digital terrain models (DTM) are widely used in the exploration of water areas. The models are often based on bathymetric data from a multibeam echosounder. DTM creators should properly select model parameters, firstly the grid resolution. High grid resolution enables creating very accurate models, however, they require high computing power and the data gathered in the grid occupy much more memory space. Low grid resolution means significantly less data describing the model, but, naturally, its accuracy will also be lower. The author proposes a method permitting to examine the accuracies of DTMs that depend on adopted grid resolution. Further the article will present search for an accurate grid resolution for three selected real surfaces of the seabed. The obtained results were visualized and interpreted. The author also proposes tips to be used while creating DTMs. Conclusions from the research may be helpful in digital terrain modeling of the seabed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.