The automatic text summarizing task is one of the most complex problems in the field of natural language processing. In this dissertation, we present the abstraction-based summarization approach which allows to paraphrase the original text and generate new sentences. Creation of new formulations, completely different from the original text is similar to how humans summarize texts. To achieve this, we propose the deep learning method using Sequence to Sequence architecture with the attention mechanism. The goal is to create the model for Polish language, using dataset containing over 200,000 articles from Polish websites, split into text and summary parts. Presented outcomes look promising, obtaining decent results utilizing standard metrics for such type of task.Based on review of prior research done during experiments, this is the very first attempt of applying abstractive text summarization techniques for Polish language.
Self-supervised methods gain more and more attention, especially in the medical domain, where the number of labeled data is limited. They provide results on par or superior to their fully supervised competitors, yet the difference between information coded by both methods is unclear. This work introduces a novel comparison framework for explaining differences between supervised and self-supervised models using visual characteristics important to the human perceptual system. We apply this framework to models trained for Gleason score and conclude that self-supervised methods are more biased toward contrast and texture transformation than their supervised counterparts. At the same time, supervised methods code more information about the shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.