In this study, we present the first data concerning the anatomical, morphometrical, histological and histochemical study of the orbit, eye tunics, eyelids and orbital glands in South African Painted Dogs (Lycaon pictus pictus). The study was performed using eyeball morphometry, analysis of the bony orbit including its morphometry, macroscopic study, morphometry, histological examination of the eye tunics and chosen accessory organs of the eye and histochemical analysis. The orbit was funnel shaped and was open-type. There was a single ethmoid opening for the ethmoid nerve on the orbital lamina. The pupil was round, while the ciliary body occupied a relatively wide zone. The iris was brown and retina had a pigmented area. The cellular tapetum lucidum was semi-circular and milky and was composed of 14–17 layers of tapetal cells arranged in a bricklike structure. In the lower eyelid, there was a single conjunctival lymph nodule aggregate. One or two additional large conjunctval folds were observed within the posterior surface of the upper eyelids. The superficial gland of the third eyelid had a serous nature. The third eyelid was T-shaped and was composed of hyaline tissue. Two to three conjunctival lymph nodul aggregates were present within the bulbar conjunctiva of the third eyelid. The lacrimal gland produced a sero-mucous secretion. A detailed anatomic analysis of the eye area in the captive South African Painted Dogs females showed the similarities (especially in the histological examination of the eyetunics and orbital glands) as well as the differences between the Painted dog and the other representatives of Canidae. The differences included the shape and size od the orbita with comparison to the domestic dog. Such differences in the orbit measurements are most likely associated with the skull type, which are defined in relation to domestic dogs. The presented results significantly expand the existing knowledge on comparative anatomy in the orbit, eye and chosen accessory organs in wild Canidae.
The pygmy hippopotamus is phylogenetically related to members of both the Suidae and Cetacea. However, differences in their habitats may have resulted in variation in the anatomy and physiology of the ocular adnexa between these species. Therefore, this study focuses on the identification of accessory organs of the eye, which are typical for the pygmy hippopotamus and are comparable to organs present in mammals related to it. Moreover, the secretions produced by the superficial gland of the third eyelid, the deep gland of the third eyelid and the lacrimal gland were examined, as they ensure eyeball protection. In the upper and lower eyelids, numerous serous glands where identified, which were typical for the pygmy hippopotamus and similar as in the Cetacea. This study enabled to identify additional folds in the eyelids of the pygmy hippopotamus. Lymphoid follicles and diffuse lymphocytes were not found in the lymphoid region in the upper or lower eyelids and the third eyelid, which was most likely caused by the age of the studied hippopotamuses. An accurate histochemical analysis revealed that the secretions of the pygmy hippopotamus are very similar to the Sus scrofa. The structural differences between the pygmy hippopotamus and representatives of Cetacea are most likely caused by the fact that most of Cetacea live in saltwater and are exposed to more frequent fluctuations in water temperature compared to the pygmy hippopotamus, which lives in fresh water and does not lead a migratory lifestyle like the Cetacea.
In this study, we present first data concerning the morphological observations of the orbital region, eye tunics, upper and lower eyelids, superficial gland of the third eyelid with the third eyelid, and lacrimal gland in captive adult male Asiatic black bear. The following research methods were used in the work: the eyeball morphometry, the orbital region description, macroscopic description, morphometric and histological analysis of the eye tunics and selected the accessory organs of the eye (Fontana–Masson, hematoxylin & eosin (H&E), Methyl-green-pyronin Y (MGP Y), Movat pentachrome, and picro-Mallory trichrome) as well as histochemical examination (PAS, AB pH 1.0, AB pH 2.5, AB pH 2.5/PAS and HDI). The eyeball of the Asiatic black bear was a spherical shape, while the periorbita was funnel/conical-shaped and the eye socket was of the open type. The cornea was absent of the Bowman’s membrane similar to all domestic dogs and some wild dogs. There were palisades of Vogt in the corneal limbus epithelium similar to the Canidae. Degenerative choroidal tapetum lucidum similar to ranch mink (Mustelidae) has been found. The pupil was big and round in shape. The ciliary muscle, dilatator and sphincter muscle were well developed, similar to the pinnipeds. The lens was biconvex round, similar to the Canidae. The retina was composed similarly to the diurnal terrestrial carnivores. In both eyelids were observed very well-developed tarsal glands, ciliary glands and sebaceous glands. The orbital zone in the eyelids was characterized by lymphoid follicles, diffuse lymphocytes and specialized high endothelial venules. In the anterior palpebral margin of the upper eyelid, soft and short eyelashes were observed, while in the lower eyelids they were absent. The third eyelid was T-shaped and composed of the hyaline tissue, and it contained CALT, similar to that in Canidae. The superficial gland of the third eyelid was a multilobar alveolar branched complex with seromucous nature, while the lacrimal gland was also a multilobar acinar branched complex gland, but producing a mucous–serous secretion. The results of our research indicate that the features of the anatomy of the eye and orbital region in Asiatic black bear are also typical of the Ursidae family. Moreover, a detailed analysis of the morphological eye region may be useful in comparative studies and veterinary diagnostics in this bear species.
The Afrotheria clade includes a large group of extant mammals, and the aardvark (Orycteropus afer) is the only representative of the order Tubulidentata in it. Here, we studied the morphological nature of the orbital region, eye tunics, upper and lower eyelids, superficial gland of the third eyelid, the third eyelid, deep gland of the third eyelid, and lacrimal gland in post‐mortem specimens obtained from three captive aardvarks, two young and one adult. The obtained samples were analyzed using macroscopic, histological, and histochemical methods. We observed choroidal tapetum lucidum fibrosum in all specimens, which was typical for aardvarks. The superficial gland of the third eyelid was a compound multilobar tubular branched gland of a mucous nature. The deep gland of the third eyelid produced a serous secretion. The seromucous secretion was typical for the lacrimal gland. We compared the morphological data of the O. afer skull with that from other endemic African mammals in the Afrotheria clade. We found that other authors provided different anatomical names for some bones and foramina located within the orbit. The types and function of eyelid glands, as well as eyeball glands of aardvarks, can primarily be connected with their habitat. Our study may constitute an introduction to the ontogenesis of individual eyeball glands in aardvarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.