The paper presents the concept of mission planning for a short-range tactical class Unmanned Aerial Vehicle (UAV) that recognizes targets using the sensors it has been equipped with. Tasks carried out by such systems are mainly associated with aerial reconnaissance employing Electro Optical (EO)/Near Infra-Red (NIR) heads, Synthetic Aperture Radar (SAR), and Electronic Intelligence (ELINT) systems. UAVs of this class are most often used in NATO armies to support artillery actions, etc. The key task, carried out during their activities, is to plan a reconnaissance mission in which the flight route will be determined that optimally uses the sensors’ capabilities. The paper describes the scenario of determining the mission plan and, in particular, the UAV flight routes to which the recognition targets are assigned. The problem was decomposed into several subproblems: assigning reconnaissance tasks to UAVs with choosing the reconnaissance sensors and designating an initial UAV flight plan. The last step is planning a detailed flight route taking into account the time constraints imposed on recognition and the characteristics of the reconnaissance sensors. The final step is to generate the real UAV flight trajectory based on its technical parameters. The algorithm for determining exact flight routes for the indicated reconnaissance purposes was also discussed, taking into account the presence of enemy troops and available air corridors. The task scheduling algorithm—Vehicle Route Planning with Time Window (VRPTW)—using time windows is formulated in the form of the Mixed Integer Linear Problem (MILP). The MILP formulation was used to solve the UAV flight route planning task. The algorithm can be used both when planning individual UAV missions and UAV groups cooperating together. The approach presented is a practical way of establishing mission plans implemented in real unmanned systems.
The paper presents the concept of planning the optimal trajectory of fixed-wing unmanned aerial vehicle (UAV) of a short-range tactical class, whose task is to recognize a set of ground objects as a part of a reconnaissance mission. Tasks carried out by such systems are mainly associated with an aerial reconnaissance using Electro-Optical/Infrared (EO/IR) systems and Synthetic Aperture Radars (SARs) to support military operations. Execution of a professional reconnaissance of the indicated objects requires determining the UAV flight trajectory in the close neighborhood of the target, in order to collect as much interesting information as possible. The paper describes the algorithm for determining UAV flight trajectories, which is tasked with identifying the indicated objectives using the sensors specified in the order. The presence of UAV threatening objects is taken into account. The task of determining the UAV flight trajectory for recognition of the target is a component of the planning process of the tactical class UAV mission, which is also presented in the article. The problem of determining the optimal UAV trajectory has been decomposed into several subproblems: determining the reconnaissance flight method in the vicinity of the currently recognized target depending on the sensor used and the required parameters of the recognition product (photo, film, or SAR scan), determining the initial possible flight trajectory that takes into account potential UAV threats, and planning detailed flight trajectory considering the parameters of the air platform based on the maneuver planning algorithm designed for tactical class platforms. UAV route planning algorithms with time constraints imposed on the implementation of individual tasks were used to solve the task of determining UAV flight trajectories. The problem was formulated in the form of a Mixed Integer Linear Problem (MILP) model. For determining the flight path in the neighborhood of the target, the optimal control algorithm was also presented in the form of a MILP model. The determined trajectory is then corrected based on the construction algorithm for determining real UAV flight segments based on Dubin curves.
This article presents a framework for planning a drone swarm mission in a hostile environment. Elements of the planning framework are discussed in detail, including methods of planning routes for drone swarms using mixed integer linear programming (MILP) and methods of detecting potentially dangerous objects using EO/IR camera images and synthetic aperture radar (SAR). Methods of detecting objects in the field are used in the mission planning process to re-plan the swarm’s flight paths. The route planning model is discussed using the example of drone formations managed by one UAV that communicates through another UAV with the ground control station (GCS). This article presents practical examples of using algorithms for detecting dangerous objects for re-planning of swarm routes. A novelty in the work is the development of these algorithms in such a way that they can be implemented on mobile computers used by UAVs and integrated with MILP tasks. The methods of detection and classification of objects in real time by UAVs equipped with SAR and EO/IR are presented. Different sensors require different methods to detect objects. In the case of infrared or optoelectronic sensors, a convolutional neural network is used. For SAR images, a rule-based system is applied. The experimental results confirm that the stream of images can be analyzed in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.