The wood industry faces challenges due to rising prices and limited wood availability, putting pressure on material efficiency in wood processing. This justifies the analysis of the relationship between efficiency and economy in pine wood processing. The study aimed to measure the impact of variations in the thickness of logs, changes in the technology of their further processing, and changes in prices of raw materials and products on the material efficiency in the context of large-scale production of furniture elements made of pinewood. The raw material input consisted of three categories of log sizes, from which the specialized purpose lumber was produced. The lumber was then processed into semi-finished furniture elements with three technologies: without detecting natural wood defects, with human detection, and with automatic detection. The study was conducted in Poland from 2020 to 2022. The material efficiencies in every stage of the analyzed wood processing and the cost efficiencies were calculated and analyzed based on the results obtained under real industrial conditions. The main findings are as follows: (1) when comparing the logs in the three tested diameter ranges (14–23 cm, 23–30 cm, and more than 30 cm), it can be observed that the overall material efficiency of sawing is in the range of 70%–85% and increases with the thickness of the log; (2) the share of 38 mm specialized sawn timber in the total amount of sawn timber was 41%–58% and increased with increasing log diameter; (3) the economic efficiency of the technological process is 170%–290%, based on the log size and the technology of further processing employed. The determining factor affecting cost efficiencies is unexpected changes in raw material prices and product demand in 2022. The findings suggest that while improvements in processing technology can boost efficiency, they cannot fully offset the rise in raw wood material prices.
A robotization of assembly is the real implementation of Industry 4.0 in the furniture industry. The robotization objective is to obtain favorable values of production process parameters (performance, productivity, quality) and to improve human wellbeing at work. Our aim was to present and compare the quality parameters of a selected furniture production process, performed in a very long series, containing more than 30 thousand products. The analysis included the results of the long-term measurements of the quality level of upholstery frames produced by the modified and improved, on the basis of operational conclusions, robotized line for the serial production of upholstery frames and by the simultaneously used nonrobotic line for assembly of frames of the same construction. The results obtained show that robotized assembly leads to a much lower percentage of defective products than in the case of the nonrobotic technology, the causes and types of defects in the products are also different, and it is easier to prevent these defects and remove them. The cognitive findings identified problems and challenges, not found in traditional technologies, caused by the using of manufacturing robots in furniture production.
Swelling and shrinkage anisotropy affect the susceptibility to an assembly of wooden elements by changing designed clearances or interference fits. This work described the new method to measure mounting holes’ moisture-induced shape instability and its verification using three sets of twin samples made of Scots pinewood. Each set of samples contained a pair with different grain patterns. All samples were conditioned under reference conditions (relative air humidity–RH = 60% and temperature 20 °C), and their moisture content (MC) reached equilibrium (10.7 ± 0.1%). On the side of each sample, the seven mounting holes of 12 mm in diameter were drilled. Immediately after drilling, Set 1 was used to measure the effective hole diameter with 15 cylindrical plug-gauges with diameters of 0.05 mm step, while Set 2 and Set 3 were separately re-seasoned by six months in two extreme conditions. Set 2 was conditioned with air at 85% RH (reached an equilibrium MC of 16.6 ± 0.5%), while Set 3 was exposed to air at 35% RH (reached an equilibrium MC of 7.6 ± 0.1%). Results of the plug gauge tests highlighted that holes in the samples subjected to swelling (Set 2) increased an effective diameter in the range of 12.2–12.3 mm (1.7–2.5%), while samples subjected to shrinking (Set 3) reduced the effective diameter to 11.9–11.95 mm (0.8–0.4%). To accurately reproduce the complex shape of the deformation, gypsum casts of holes were made. The 3D optical scanning method was used to read the gypsum casts’ shape and dimensions. The 3D surface map of deviations analysis provided more detailed information than the plug-gauge test results. Both the shrinking and swelling of the samples changed the shapes and sizes of the holes, but shrinking reduced the effective diameter of the hole more than swelling increased it. The moisture-induced changes in the shape of holes are complex: the holes ovalized with a different range, depending on the wood grain pattern and hole depth, and were slightly extended in diameter at the bottom. Our study provides a new way to measure 3D hole initial shape changes in wooden elements during desorption and absorption.
Moisture swelling and shrinkage of pine wood and susceptibility to robotic assembly of furniture elements. Background and Objectives. Processing technology, storage conditions and wood properties affect the actual dimensions of wooden elements. It was decided to experimentally check how the dimensions of samples, made of the selected wood species, will change under the influence of different storage conditions, typical for industrial environments. And especially how these changes will affect the susceptibility to assembly of upholstery frame rails that form a box joint. Materials and Methods. The tests were performed on three series of rails made of Scotch pine wood. Each tested series consisted of 12 elements. First, the five dimensions forming the box joint were measured. Then, each series was exposed to different conditions: in the industrial hall (air of RH = 29-48% and t = 16-24°C), in the compressor room (RH = 24-51%, t = 13-27°C) and outside in a covered shed (RH = 20-50%, t = 3-23°C). After 35 days the dimensions were measured again. Results. It was found that the average moisture content decreased and the dimensional deviations increased in the samples stored in the production hall and in the compressor room. In samples stored outside, the mean moisture content did not change, but the dimensional deviations increased significantly. Discussion. The storage of wooden elements increases the deviations from assigned dimensions. Exposure to repeated changes in moisture content and ambient temperature, even without changing the final moisture content of the elements, results in greater dimensional changes than storage under more stabilized conditions that reduce wood moisture content. Conclusions. The shrinkage and swelling of wood due to changes in its moisture content are not fully reversible, therefore, apart from maintaining the appropriate temperature and air humidity during storage, it is important to keep these conditions unchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.