A multi-proxy approach involving a study of sediment architecture, grain size, grain roundness and crushing index, petrographic and clay mineral composition, till fabric and till micromorphology was applied to infer processes of till formation and deformation under a Weichselian ice sheet at Kurzetnik, Poland. The succession consists of three superposed till units overlying outwash sediments deformed at the top. The textural characteristics of tills vary little throughout the till thickness, whereas structural appearance is diversified including massive and bedded regions. Indicators of intergranular bed deformation include overturned, attenuated folds, boudinage structures, a sediment-mixing zone, grain crushing, microstructural lineations, grain stacking and high fabric strength. Lodgement proxies are grooved intra-till surfaces, ploughing marks and consistently striated clast surfaces. Basal decoupling by pressurized meltwater is indicated by undisturbed sand stringers, sand-filled meltwater scours under pebbles and partly armoured till pellets. It is suggested that the till experienced multiple transitions between lodgement, deformation and basal decoupling. Cumulative strain was high, but the depth of (time-transgressive) deformation much lower (centimetre range) than the entire till thickness (ca 2 m) at any point in time, consistent with the deforming bed mosaic model. Throughout most of ice overriding, porewater pressure was high, in the vicinity of glacier floatation pressure indicating that the substratum, consisting of 11 m thick sand, was unable to drain subglacial meltwater sufficiently.
Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.