Transplantation of high-risk donor lungs that were physiologically stable during 4 hours of ex vivo perfusion led to results similar to those obtained with conventionally selected lungs. (Funded by Vitrolife; ClinicalTrials.gov number, NCT01190059.).
The human coronavirus NL63 is generally classified as a common cold pathogen, though the infection may also result in severe lower respiratory tract diseases, especially in children, patients with underlying disease, and elderly. It has been previously shown that HCoV-NL63 is also one of the most important causes of croup in children. In the current manuscript we developed a set of polymer-based compounds showing prominent anticoronaviral activity. Polymers have been recently considered as promising alternatives to small molecule inhibitors, due to their intrinsic antimicrobial properties and ability to serve as matrices for antimicrobial compounds. Most of the antimicrobial polymers show antibacterial properties, while those with antiviral activity are much less frequent. A cationically modified chitosan derivative, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and hydrophobically-modified HTCC were shown to be potent inhibitors of HCoV-NL63 replication. Furthermore, both compounds showed prominent activity against murine hepatitis virus, suggesting broader anticoronaviral activity.
We sought to develop a predictive model based exclusively on preoperative factors to identify patients at risk for PrlICULOS following coronary artery bypass grafting (CABG). Retrospective analysis was performed on patients undergoing isolated CABG at a single center between June 1998 and December 2002. PrlICULOS was defined as initial admission to ICU exceeding 72 h. A parsimonious risk-predictive model was constructed on the basis of preoperative factors, with subsequent internal validation. Of 3483 patients undergoing isolated CABG between June 1998 and December 2002, 411 (11.8%) experienced PrlICULOS. Overall in-hospital mortality was higher among these patients (14.4% vs. 1.2%, P
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.