Tissue engineering of sizeable cell-scaffold constructs is limited by gradients in tissue quality from the periphery toward the center. Because homogenous delivery of oxygen to three-dimensional (3D) cell cultures remains an unsolved challenge, we hypothesized that uneven oxygen supply may impede uniform cellular growth on scaffolds. In this study we challenged static and dynamic 3D culture systems designed for bone tissue engineering applications with a well-growing subclone of MC3T3-E1 preosteoblasts and continuously measured the oxygen concentrations in the center of cell-seeded scaffolds and in the surrounding medium. After as little as 5 days in static culture, central oxygen concentrations dropped to 0%. Subsequently, cells died in central regions of the scaffold but not in its periphery, where oxygen levels were approximately 4%. The use of perfusion bioreactors successfully prevented cell death, yet central oxygen concentrations did not rise above 4%. We conclude that 3D culture in vitro is associated with relevant oxygen gradients, which can be the cause of inhomogeneous tissue quality. Perfusion bioreactors prevent cell death but they do not entirely eliminate 3D culture-associated oxygen gradients. Therefore, we advise continuous oxygen monitoring of 3D culture systems to ensure tissue quality throughout engineered constructs.
The identification of mesenchymal stem cells (MSCs) in adult human tissues and the disclosure of their self-renew-al and multi-lineage differentiation capabilities have provided exciting prospects for cell-based regeneration and tis-sue engineering. Although a considerable amount of data is available describing MSCs, there is still lack of information regarding the molecular mechanisms that govern their adhesion and migration. In this work, we will review the current state of knowledge on integrins and other adhesion molecules found to be expressed on MSCs. The dis-cussed topics include the characteristics of MSCs and their clinical applications, integrins and their central role in cell-matrix attachment and migration, and comments on mobilization, differentiation and contribution to tumour development. Finally, by understanding the complex and fundamental pathways by which MSCs attach and migrate, it might be possible to fine-tune the strategies for effective and safe use of MSCs in regenerative therapies.
Human mesenchymal stem cells (hMSCs) can be readily isolated from bone marrow and differentiate into multiple tissues, making them a promising target for future cell and gene therapy applications. The low frequency of hMSCs in bone marrow necessitates their isolation and expansion in vitro prior to clinical use, but due to senescence-associated growth arrest during culture, limited cell numbers can be generated. The lifespan of hMSCs has been extended by ectopic expression of human telomerase reverse transcriptase (hTERT) using retroviral vectors. Since malignant transformation was observed in hMSCs and retroviral vectors cause insertional mutagenesis, we ectopically expressed hTERT using lentiviral gene transfer. Single-cell-derived hMSC clones expressing hTERT did not show malignant transformation in vitro and in vivo after extended culture periods. There were no changes observed in the expression of tumour suppressor genes and karyotype. Cultured hMSCs lack telomerase activity, but it was significantly increased by ectopic expression of hTERT. HTERT expression prevented hMSC senescence and the cells showed significantly higher and unlimited proliferation capacity. Even after an extended culture period, hMSCs expressing hTERT preserved their stem cells character as shown by osteogenic, adipogenic and chon-drogenic differentiation. In summary, extending the lifespan of human mesenchymal stem cells by ectopic expression of hTERT using lentiviral gene transfer may be an attractive and safe way to generate appropriate cell numbers for cell and gene therapy applications.
ObjectivePneumatosis intestinalis has been increasingly detected in recent years with the more frequent use of computed tomography for abdominal imaging of the intestine. The underlying causes of the gas found during radiographic studies of the bowel wall can vary widely and different hypotheses regarding its pathophysiology have been postulated. Pneumatosis intestinalis often represents a benign condition and should not be considered an argument for surgery. However, it can also require life-threatening surgery in some cases, and this can be a difficult decision in some patients.MethodsThe spectrum of pneumatosis intestinalis is discussed here based on various computed tomographic and surgical findings in patients who presented at our University Medical Centre in 2003-2008. We have also systematically reviewed the literature to establish the current understanding of its aetiology and pathophysiology, and the possible clinical conditions associated with pneumatosis intestinalis and their management.ResultsPneumatosis intestinalis is a primary radiographic finding. After its diagnosis, its specific pathogenesis should be ascertained because the appropriate therapy is related to the underlying cause of pneumatosis intestinalis, and this is sometimes difficult to define. Surgical treatment should be considered urgent in symptomatic patients presenting with an acute abdomen, signs of ischemia, or bowel obstruction. In asymptomatic patients with otherwise inconspicuous findings, the underlying disease should be treated first, rather than urgent exploratory surgery considered. Extensive and comprehensive information on the pathophysiology and clinical findings of pneumatosis intestinalis is provided here and is incorporated into a treatment algorithm.ConclusionsThe information presented here allows a better understanding of the radiographic diagnosis and underlying aetiology of pneumatosis intestinalis, and may facilitate the decision-making process in this context, thus providing fast and adequate therapy to particular patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.