Classical theories of sensory processing view the brain as a passive, stimulus-driven device. By contrast, more recent approaches emphasize the constructive nature of perception, viewing it as an active and highly selective process. Indeed, there is ample evidence that the processing of stimuli is controlled by top-down influences that strongly shape the intrinsic dynamics of thalamocortical networks and constantly create predictions about forthcoming sensory events. We discuss recent experiments indicating that such predictions might be embodied in the temporal structure of both stimulus-evoked and ongoing activity, and that synchronous oscillations are particularly important in this process. Coherence among subthreshold membrane potential fluctuations could be exploited to express selective functional relationships during states of expectancy or attention, and these dynamic patterns could allow the grouping and selection of distributed neuronal responses for further processing.
A fundamental step in visual pattern recognition is the establishment of relations between spatially separate features. Recently, we have shown that neurons in the cat visual cortex have oscillatory responses in the range 40-60 Hz (refs 1, 2) which occur in synchrony for cells in a functional column and are tightly correlated with a local oscillatory field potential. This led us to hypothesize that the synchronization of oscillatory responses of spatially distributed, feature selective cells might be a way to establish relations between features in different parts of the visual field. In support of this hypothesis, we demonstrate here that neurons in spatially separate columns can synchronize their oscillatory responses. The synchronization has, on average, no phase difference, depends on the spatial separation and the orientation preference of the cells and is influenced by global stimulus properties.
temporal relations requires the joint evaluation of responses from more than one neuron, only experiments that permit simultaneous measurements of responses Wolf Singer* Max-Planck-Institute for Brain Research Deutschordenstrasse 46 60528 Frankfurt from multiple units are considered. These include multi-Bair, W., and Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving monkey. Neural Comput. 8, 44-66.
Converging evidence from electrophysiological, physiological and anatomical studies suggests that abnormalities in the synchronized oscillatory activity of neurons may have a central role in the pathophysiology of schizophrenia. Neural oscillations are a fundamental mechanism for the establishment of precise temporal relationships between neuronal responses that are in turn relevant for memory, perception and consciousness. In patients with schizophrenia, the synchronization of beta- and gamma-band activity is abnormal, suggesting a crucial role for dysfunctional oscillations in the generation of the cognitive deficits and other symptoms of the disorder. Dysfunctional oscillations may arise owing to anomalies in the brain's rhythm-generating networks of GABA (gamma-aminobutyric acid) interneurons and in cortico-cortical connections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.