This paper presents a plantar pressure sensor system (P2S2) integrated in the insoles of shoes to detect thirteen commonly used human movements including walking, stooping left and right, pulling a cart backward, squatting, descending, ascending stairs, running, and falling (front, back, right, left). Six force sensitive resistors (FSR) sensors were positioned on critical pressure points on the insoles to capture the electrical signature of pressure change in the various movements. A total of 34 adult participants were tested with the P2S2. The pressure data were collected and processed using a Principal Component Analysis (PCA) for input to the multiple machine learning (ML) algorithms, including k-NN, neural network and Support-Vector Machine (SVM) algorithms. The ML models were trained using four-fold cross-validation. Each fold kept subject data independent from other folds. The model proved effective with an accuracy of 86%, showing a promising result in predicting human movements using the P2S2 integrated in shoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.