A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI‐ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low‐level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two‐layer model.
Quantifying signals and uncertainties in climate models is essential for climate change detection, attribution, prediction and projection [1][2][3] . Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain 4 , leading to low confidence in regional projections especially for precipitation over the coming decades 5, 6 . Furthermore, model simulations with tiny differences in initial conditions suggest that uncertainties may be largely irreducible due to the chaotic nature of the climate system 7-9 . However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate predictions of the last six decades project (GA 776613). FJDR, LPC, SW and RB also acknowledge the support from the EUCP project (GA 776613) and from the Ministerio de Economía y Competitividad (MINECO) as part of the CLINSA project (Grant No. CGL2017-85791-R). SW received funding from the innovation programme under the Marie Skĺodowska-Curie grant agreement H2020-MSCA-COFUND-2016-754433 and PO from the Ramon y Cajal senior tenure programme of MINECO. The EC-Earth simulations were performed on Marenostrum 4 (hosted by the Barcelona Supercomputing Center, Spain) using Auto-Submit through computing hours
There is a growing need for skilful predictions of climate up to a decade ahead. Decadal climate predictions show high skill for surface temperature, but confidence in forecasts of precipitation and atmospheric circulation is much lower. Recent advances in seasonal and annual prediction show that the signal-to-noise ratio can be too small in climate models, requiring a very large ensemble to extract the predictable signal. Here, we reassess decadal prediction skill using a much larger ensemble than previously available, and reveal significant skill for precipitation over land and atmospheric circulation, in addition to surface temperature. We further propose a more powerful approach than used previously to evaluate the benefit of initialisation with observations, improving our understanding of the sources of skill. Our results show that decadal climate is more predictable than previously thought and will aid society to prepare for, and adapt to, ongoing climate variability and change.npj Climate and Atmospheric Science (2019)2:13 ; https://doi.
The MPI‐ESM1.2 is the latest version of the Max Planck Institute Earth System Model and is the baseline for the Coupled Model Intercomparison Project Phase 6 and current seasonal and decadal climate predictions. This paper evaluates a coupled higher‐resolution version (MPI‐ESM1.2‐HR) in comparison with its lower‐resolved version (MPI‐ESM1.2‐LR). We focus on basic oceanic and atmospheric mean states and selected modes of variability, the El Niño/Southern Oscillation and the North Atlantic Oscillation. The increase in atmospheric resolution in MPI‐ESM1.2‐HR reduces the biases of upper‐level zonal wind and atmospheric jet stream position in the northern extratropics. This results in a decrease of the storm track bias over the northern North Atlantic, for both winter and summer season. The blocking frequency over the European region is improved in summer, and North Atlantic Oscillation and related storm track variations improve in winter. Stable Atlantic meridional overturning circulations are found with magnitudes of ~16 Sv for MPI‐ESM1.2‐HR and ~20 Sv for MPI‐ESM1.2‐LR at 26°N. A strong sea surface temperature bias of ~5°C along with a too zonal North Atlantic current is present in both versions. The sea surface temperature bias in the eastern tropical Atlantic is reduced by ~1°C due to higher‐resolved orography in MPI‐ESM‐HR, and the region of the cold‐tongue bias is reduced in the tropical Pacific. MPI‐ESM1.2‐HR has a well‐balanced radiation budget and its climate sensitivity is explicitly tuned to 3 K. Although the obtained reductions in long‐standing biases are modest, the improvements in atmospheric dynamics make this model well suited for prediction and impact studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.