Using the Nambu-Jona-Lasinio model to describe the nucleon as a quark-diquark state, we discuss the stability of nuclear matter in a hybrid model for the ground state at finite nucleon density. It is shown that a simple extension of the model to simulate the effects of confinement leads to a scalar polarizability of the nucleon. This, in turn, leads to a less attractive effective interaction between the nucleons, helping to achieve saturation of the nuclear matter ground state. It is also pointed out that that the same effect naturally leads to a suppression of "Z-graph" contributions with increasing scalar potential.PACS: 12.39 Fe (chiral Lagrangians), 12.39 Ki (relativistic quark model), 21.65+f (nuclear matter), 24.85+p (quarks, gluons and QCD in nuclei and nuclear processes). Keywords: quark-diquark structure of the nucleon, nuclear matter stability, Nambu-Jona-Lasinio model for quarks.
A neutron or proton excess in nuclei leads to an isovector-vector mean-field which, through its coupling to the quarks in a bound nucleon, implies a shift in the quark distributions with respect to the Bjorken scaling variable. We show that this result leads to an additional correction to the NuTeV measurement of sin 2 ΘW . The sign of this correction is largely model independent and acts to reduce their result. Explicit calculation within a covariant and confining Nambu-Jona-Lasinio model predicts that this vector field correction accounts for approximately two-thirds of the NuTeV anomaly. We are therefore led to offer a new interpretation of the NuTeV measurement, namely, that it is further evidence for the medium modification of the bound nucleon wavefunction.
We determine nuclear structure functions and quark distributions for 7 Li, 11 B, 15 N and 27 Al. For the nucleon bound state we solve the covariant quark-diquark equations in a confining Nambu-Jona-Lasinio model, which yields excellent results for the free nucleon structure functions. The nucleus is described using a relativistic shell model, including mean scalar and vector fields that couple to the quarks in the nucleon. The nuclear structure functions are then obtained as a convolution of the structure function of the bound nucleon with the light-cone nucleon distributions. We find that we are readily able to reproduce the EMC effect in finite nuclei and confirm earlier nuclear matter studies that found a large polarized EMC effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.