Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Despite a well documented tubulin-stabilizing effect, many side effects of taxol therapy cannot be explained by cytoskeletal mechanisms. In the present study submicromolar concentrations of taxol, mimicking concentrations found in patients, induced cytosolic calcium (Ca 2؉ ) oscillations in a human neuronal cell line. These oscillations were independent of extracellular and mitochondrial Ca 2؉ but dependent on intact signaling via the phosphoinositide signaling pathway. We identified a taxol binding protein, neuronal Ca 2؉ sensor 1 (NCS-1), a Ca 2؉ binding protein that interacts with the inositol 1,4,5-trisphosphate receptor from a human brain cDNA phage display library. Taxol increased binding of NCS-1 to the inositol 1,4,5-trisphosphate receptor. Short hairpin RNA-mediated knockdown of NCS-1 in the same cell line abrogated the response to taxol but not to other agonists stimulating the phosphoinositide signaling pathway. These findings are important for studies involving taxol as a research tool in cell biology and may help to devise new strategies for the management of side effects induced by taxol therapy.calcium imaging ͉ calcium release ͉ display cloning ͉ drug-induced side effects ͉ hypersensitivity reactions
Paclitaxel (Taxol) is a well established chemotherapeutic agent for the treatment of solid tumors, but it is limited in its usefulness by the frequent induction of peripheral neuropathy. We found that prolonged exposure of a neuroblastoma cell line and primary rat dorsal root ganglia with therapeutic concentrations of Taxol leads to a reduction in inositol trisphosphate (InsP 3)-mediated Ca 2؉ signaling. We also observed a Taxol-specific reduction in neuronal calcium sensor 1 (NCS-1) protein levels, a known modulator of InsP 3 receptor (InsP3R) activity. This reduction was also found in peripheral neuronal tissue from Taxol treated animals. We further observed that short hairpin RNA-mediated NCS-1 knockdown had a similar effect on phosphoinositide-mediated Ca 2؉ signaling. When NCS-1 protein levels recovered, so did InsP 3-mediated Ca 2؉ signaling. Inhibition of the Ca 2؉ -activated protease -calpain prevented alterations in phosphoinositide-mediated Ca 2؉ signaling and NCS-1 protein levels. We also found that NCS-1 is readily degraded by -calpain in vitro and that -calpain activity is increased in Taxol but not vehicle-treated cells. From these results, we conclude that prolonged exposure to Taxol activates -calpain, which leads to the degradation of NCS-1, which, in turn, attenuates InsP 3-mediated Ca 2؉ signaling. These findings provide a previously undescribed approach to understanding and treating Taxolinduced peripheral neuropathy.calcium imaging ͉ dorsal root ganglia ͉ endoplasmic reticulum ͉ polyneuropathy ͉ inositol 1,4,5-trisphosphate receptor
Regulation and dysregulation of intracellular calcium (Ca 2+ ) signaling via the inositol 1,4,5-trisphosphate receptor (InsP 3 R) has been linked to many cellular processes and pathological conditions. In the present study, addition of neuronal calcium sensor-1 (NCS-1), a high-affinity, low-capacity, calcium-binding protein, to purified InsP 3 R type 1 (InsP 3 R1) increased the channel activity in both a calcium-dependent and -independent manner. In intact cells, enhanced expression of NCS-1 resulted in increased intracellular calcium release upon stimulation of the phosphoinositide signaling pathway. To determine whether InsP 3 R1/NCS-1 interaction could be functionally relevant in bipolar disorders, conditions in which NCS-1 is highly expressed, we tested the effect of lithium, a salt widely used for treatment of bipolar disorders. Lithium inhibited the enhancing effect of NCS-1 on InsP 3 R1 function, suggesting that InsP 3 R1/NCS-1 interaction is an essential component of the pathomechanism of bipolar disorder.
Polyneuropathy is a frequent and potentially severe side effect of clinical tumor chemotherapy. The goal of this study was to characterize paclitaxel-, cisplatin-, vincristine- and bortezomib-induced neuropathy in C57BL/6 mice with a comparative approach. The phenotype of the animals was evaluated at four time points with behavioral and electrophysiological tests, followed by histology. Treatment protocols used in this study were well tolerated and induced a sensory and predominantly axonal polyneuropathy. Behavioral testing revealed normal motor coordination, whereas all mice receiving verum treatment developed mechanical allodynia and distinct gait alterations. Electrophysiological evaluation showed a significant decrease of the caudal sensory nerve action potential amplitude for all cytostatic agents and a moderate reduction of nerve conduction velocity for cisplatin and paclitaxel. This finding was confirmed by histological analysis of the sciatic nerve which showed predominantly axonal damage: Paclitaxel and vincristine affected mostly large myelinated fibers, bortezomib small myelinated fibers and cisplatin damaged all types of myelinated fibers to a similar degree. Neuropathic symptoms developed faster in paclitaxel and vincristine treated animals compared to cisplatin and bortezomib treatment. The animal models in this study can be used to elucidate pathomechanisms underlying chemotherapy-induced polyneuropathy and for the development of novel therapeutic and preventative strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.