Modelling spatial heterogeneity (SH) is a controversial subject in real estate economics. Single-family-home prices in Austria are explored to investigate the capability of global and locally weighted hedonic models. Even if regional indicators are not fully capable to model SH and technical amendments are required to account for unmodelled SH, the results emphasise their importance to achieve a well-specified model. Due to SH beyond the level of regional indicators, locally weighted regressions are proposed. Mixed geographically weighted regression (MGWR) prevents the limitations of fixed effects by exploring spatially stationary and non-stationary price effects. Besides reducing prediction errors, it is concluded that global model misspecifications arise from improper selected fixed effects. Reported findings provide evidence that the SH of implicit prices is more complex than can be modelled by regional indicators or purely local models. The existence of both stationary and non-stationary effects implies that the Austrian housing market is economically connected.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. We apply additive mixed regression models (AMM) to estimate hedonic price equations. Terms of use: Documents in EconStor mayNon-linear effects of continuous covariates as well as a smooth time trend are modeled non-parametrically through P-splines. Unobserved district-specific heterogeneity is modeled in two ways: First, by location specific intercepts with the postal code serving as a location variable. Second, in order to permit spatial variation in the nonlinear price gradients, we introduce multiplicative scaling factors for nonlinear covariates. This allows highly nonlinear implicit price functions to vary within a regularized framework, accounting for district-specific spatial heterogeneity. Using this model extension, we find substantial spatial variation in house price gradients, leading to a considerable improvement of model quality and predictive power.
PurposeThe purpose of this paper is to critically review the German mortgage lending value (MLV) and to adapt it in order to find a new concept that could serve as the basis for an internationally accepted standard for valuations for lending purposes.Design/methodology/approachThe research is based on a critical review of existing practices and literature and applies developments in the area of risk management tools, modern valuation techniques as well as the results of the consultation for Basel II in order to find an improved method.FindingsIt was found that a value‐at‐risk approach and the implementation of simulation helps to understand the concept of MLV. The results also indicate that the German system of calculating the MLV has to be improved.Practical implicationsBanks are in need of tools, reliable instruments and a strong theoretical basis when evaluating their collateral. The valuation of real estate for long‐term loans has always been a problem. This paper indicates a strong basis for the implementation of tools in every day business.Originality/valueValue‐at‐risk concepts and the concepts of maximum/maximum potential loss within a (future) time period have until today not been integrated in the valuation of real estate serving as collateral.
This paper analyzes house price data belonging to three hierarchical levels of spatial units. House selling prices with associated individual attributes (the elementary level-1) are grouped within municipalities (level-2), which form districts (level-3), which are themselves nested in counties (level-4). Additionally to individual attributes, explanatory covariates with possibly nonlinear effects are available on two of these spatial resolutions. We apply a multilevel version of structured additive regression (STAR) models to regress house prices on individual attributes and locational neighbourhood characteristics in a four-level hierarchical model. In multilevel STAR models the regression coefficients of a particular nonlinear term may themselves obey a regression model with structured additive predictor. The framework thus allows to incorporate nonlinear covariate effects and time trends, smooth spatial effects and complex interactions at every level of the hierarchy of the multilevel model. Moreover, we are able to decompose the spatial heterogeneity effect and investigate its magnitude at different spatial resolutions allowing for improved predictive quality even in the case of unobserved spatial units. Statistical inference is fully Bayesian and based on highly efficient Markov chain Monte Carlo simulation techniques that take advantage of the hierarchical structure in the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.