Abstract. The study of extension-based semantics within the seminal abstract argumentation model of Dung has largely focused on definitional, algorithmic and complexity issues. In contrast, matters relating to comparisons of representational limits, in particular, the extent to which given collections of extensions are expressible within the formalism, have been under-developed. As such, little is known concerning conditions under which a candidate set of subsets of arguments are "realistic" in the sense that they correspond to the extensions of some argumentation framework AF for a semantics of interest. In this paper we present a formal basis for examining extension-based semantics in terms of the sets of extensions that these may express within a single AF. We provide a number of characterization theorems which guarantee the existence of AFs whose set of extensions satisfy specific conditions and derive preliminary complexity results for decision problems that require such characterizations.
We study the complexity of reasoning in abstracts argumentation frameworks close to a graph classes that allow for efficient reasoning methods, i.e. to one of the classes of acyclic, noeven, biparite and symmetric AFs. In this work we show that certain reasoning problems on the second level of the polynomial hierarchy still maintain their full complexity when restricted to instances of fixed distance to one of the above graph classes.
OverviewThis work complements the studies in [9] on augmenting tractable fragments of abstract argumentation, but in contrast solely addresses negative results.That is we consider abstracts argumentation which are close to a graph classes which allows for efficient reasoning methods, i.e. to one of the classes of acyclic [4], noeven [6], biparite [5] and symmetric [2] AFs. We show that certain reasoning problems on the second level of the polynomial hierarchy still maintain their full complexity when restricted to instances of fixed distance to one of the above graph classes. This improves results from [9], showing hardness for the * This work has been funded by the Vienna Science and Technology Fund (WWTF) through project ICT08-028.
Within the last decade, abstract argumentation has emerged as a central field in Artificial Intelligence. Besides providing a core formalism for many advanced argumentation systems, abstract argumentation has also served to capture several non-monotonic logics and other AI related principles. Although the idea of abstract argumentation is appealingly simple, several reasoning problems in this formalism exhibit high computational complexity. This calls for advanced techniques when it comes to implementation issues, a challenge which has been recently faced from different angles. In this survey, we give an overview on different methods for solving reasoning problems in abstract argumentation and compare their particular features. Moreover, we highlight available state-of-the-art systems for abstract argumentation, which put these methods to practice.
argumentation frameworks (AFs) provide the basis for various reasoning problems in the areas of Knowledge Representation and Artificial Intelligence. Efficient evaluation of AFs has thus been identified as an important research challenge. So far, implemented systems for evaluating AFs have either followed a straight-forward reduction-based approach or been limited to certain tractable classes of AFs. In this work, we present a generic approach for reasoning over AFs, based on the novel concept of complexity-sensitivity. Establishing the theoretical foundations of this approach, we derive several new complexity results for preferred, semistable and stage semantics which complement the current complexity landscape for abstract argumentation, providing further understanding on the sources of intractability of AF reasoning problems. The introduced generic framework exploits decision procedures for problems of lower complexity whenever possible. This allows, in particular, instantiations of the generic framework via harnessing in an iterative way current sophisticated Boolean satisfiability (SAT) solver technology for solving the considered AF reasoning problems. First experimental results show that the SAT-based instantiation of our novel approach outperforms existing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.