The nuclear expression and action of the nuclear factor kappa B (NF-kappaB) transcription factor requires signal-coupled phosphorylation and degradation of the IkappaB inhibitors, which normally bind and sequester this pleiotropically active factor in the cytoplasm. The subsequent molecular events that regulate the termination of nuclear NF-kappaB action remain poorly defined, although the activation of de novo IkappaBalpha gene expression by NF-kappaB likely plays a key role. Our studies now demonstrate that the RelA subunit of NF-kappaB is subject to inducible acetylation and that acetylated forms of RelA interact weakly, if at all, with IkappaBalpha. Acetylated RelA is subsequently deacetylated through a specific interaction with histone deacetylase 3 (HDAC3). This deacetylation reaction promotes effective binding to IkappaBalpha and leads in turn to IkappaBalpha-dependent nuclear export of the complex through a chromosomal region maintenance-1 (CRM-1)-dependent pathway. Deacetylation of RelA by HDAC3 thus acts as an intranuclear molecular switch that both controls the duration of the NF-kappaB transcriptional response and contributes to the replenishment of the depleted cytoplasmic pool of latent NF-kappaB-IkappaBalpha complexes.
Tri-methylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging and heterochromatin formation. Here we show that HP1alpha, -beta, and -gamma are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged. However, the additional, transient modification of histone H3 by phosphorylation of serine 10 next to the more stable methyl-lysine 9 mark is sufficient to eject HP1 proteins from their binding sites. Inhibition or depletion of the mitotic kinase Aurora B, which phosphorylates serine 10 on histone H3, causes retention of HP1 proteins on mitotic chromosomes, suggesting that H3 serine 10 phosphorylation is necessary for the dissociation of HP1 from chromatin in M phase. These findings establish a regulatory mechanism of protein-protein interactions, through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark.
Chromatin is the physiologically relevant substrate for all genetic processes inside the nuclei of eukaryotic cells. Dynamic changes in the local and global organization of chromatin are emerging as key regulators of genomic function. Indeed, a multitude of signals from outside and inside the cell converges on this gigantic signaling platform. Numerous post-translational modifications of histones, the main protein components of chromatin, have been documented and analyzed in detail. These 'marks' appear to crucially mediate the functional activity of the genome in response to upstream signaling pathways. Different layers of cross-talk between several components of this complex regulatory system are emerging, and these epigenetic circuits are the focus of this review.
The Polycomb repressive complex 2 (PRC2) confers transcriptional repression through histone H3 lysine 27 trimethylation (H3K27me3). Here, we examined how PRC2 is modulated by histone modifications associated with transcriptionally active chromatin. We provide the molecular basis of histone H3 N terminus recognition by the PRC2 Nurf55-Su(z)12 submodule. Binding of H3 is lost if lysine 4 in H3 is trimethylated. We find that H3K4me3 inhibits PRC2 activity in an allosteric fashion assisted by the Su(z)12 C terminus. In addition to H3K4me3, PRC2 is inhibited by H3K36me2/3 (i.e., both H3K36me2 and H3K36me3). Direct PRC2 inhibition by H3K4me3 and H3K36me2/3 active marks is conserved in humans, mouse, and fly, rendering transcriptionally active chromatin refractory to PRC2 H3K27 trimethylation. While inhibition is present in plant PRC2, it can be modulated through exchange of the Su(z)12 subunit. Inhibition by active chromatin marks, coupled to stimulation by transcriptionally repressive H3K27me3, enables PRC2 to autonomously template repressive H3K27me3 without overwriting active chromatin domains.
On the histone H3 tail, Lys 9 and Lys 27 are both methylation sites associated with epigenetic repression, and reside within a highly related sequence motif ARKS. Here we show that the chromodomain proteins Polycomb (Pc) and HP1 (heterochromatin protein 1) are highly discriminatory for binding to these sites in vivo and in vitro. In Drosophila S2 cells, and on polytene chromosomes, methyl-Lys 27 and Pc are both excluded from areas that are enriched in methyl-Lys 9 and HP1. Swapping of the chromodomain regions of Pc and HP1 is sufficient for switching the nuclear localization patterns of these factors, indicating a role for their chromodomains in both target site binding and discrimination. To better understand the molecular basis for the selection of methyl-lysine binding sites, we solved the 1.8 Å structure of the Pc chromodomain in complex with a H3 peptide bearing trimethyl-Lys 27, and compared it with our previously determined structure of the HP1 chromodomain in complex with a H3 peptide bearing trimethyl-Lys 9. The Pc chromodomain distinguishes its methylation target on the H3 tail via an extended recognition groove that binds five additional residues preceding the ARKS motif. Chromatin structure contains the molecular imprint underlying cell memory and epigenetic inheritance, and emerging evidence suggests that covalent modifications of histones play a major role as carriers of epigenetic information (Felsenfeld and Groudine 2003). Histone modifications can be highly reversible, such as histone acetylation, or more stable, such as histone (lysine) methylation (Zhang and Reinberg 2001;Lachner and Jenuwein 2002). Thus, a wide range of chromatin-based regulatory options is available. These include dynamic marks permitting rapid changes in gene expression in response to physiological and environmental stimuli as well as more permanent indexing systems required for the passage of heritable patterns of epigenetic information from one cell generation to the next (Fischle et al. 2003). The identification of enzyme systems responsible for the steady-state balance of posttranslational histone modifications, together with the discovery of binding modules that "read" covalent marks on histones, have been key for our present understanding of gene regulation in the context of the chromatin polymer.Bromodomains have been the first modules implicated in the read-out of histone marks. They show affinity for acetylated lysines in histone and nonhistone proteins (for review, see Zeng and Zhou 2002), and local recruitment of bromodomain factors to certain regions of chromatin might function in mediating acetyl-histone-encoded antisilencing (Ladurner et al. 2003). In contrast, a second conserved module found in a variety of chromosomal proteins, the chromodomain, has been implicated in binding to methylated lysines on the histone tails (Bannister et al. 2001;Jacobs et al. 2001;Lachner et al. 2001). Indeed, recently a biochemical pathway of gene repression by heterochromatin assembly, involving methylation of Lys 9 of H3 by SE...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.