This paper presents a modelling study of the electrochemical hydrogen oxidation reaction at nickel/yttria-stabilized zirconia (Ni/YSZ) patterned anodes. An elementary kinetic reaction-diffusion model accounts for coupled heterogeneous chemistry and transport on the Ni and YSZ surfaces. Charge transfer is modeled as a spillover of adsorbates between the Ni and YSZ surfaces at the three-phase boundary (TPB). No a priori assumptions on rate-determining processes are made. Thermodynamic, kinetic, and transport parameters are compiled from various literature sources serving as a base for quantitative simulations. Seven different spillover reaction pathways of the hydrogen oxidation reaction are compared to experimental patterned anode data obtained previously by Bieberle et al. [ J. Electrochem. Soc. , 148 , A646 (2001)] under a range of operating conditions. Only one reaction pathway, based on two hydrogen spillover reactions, is able to describe consistently the complete experimental data set. A sensitivity analysis for this case allows identification of rate-determining processes. Surface concentrations close to the TPB are predicted to differ from the concentration derived from thermodynamical equilibrium by up to 2 orders of magnitude. The simulation results and the validity of the model are critically discussed. Directions for future theoretical and experimental studies for elucidating the mechanistic details of Ni/YSZ anodes are given.
Lithium-sulfur (Li/S) cells are promising candidates for a next generation of safe and cost-effective high energy density batteries for mobile and stationary applications. At present, most Li/S cells still suffer from relatively poor cyclability, capacity loss under moderate current densities and self-discharge. Furthermore, the underlying chemical mechanisms of the general discharge/charge behavior as well as Li/S-specific phenomena like the polysulfide shuttle are not yet fully understood. Here we present a thermodynamically consistent, fully reversible continuum model of a Li/S cell with simplified four-step electrochemistry, including a simple description of the polysulfide shuttle effect. The model is parameterized using experimental discharge curves obtained from literature and reproduces behavior at various current densities with fairly high accuracy. While being instructively simple, the presented model can still reproduce distinct macroscopic Li/S-cell features caused by the shuttle effect, e.g., seemingly infinite charging at low charge current densities, and suboptimal coulombic efficiency. The irreversible transport of active material from the cathode to the anode results in a voltage drop and capacity loss during cycling, which can also be observed experimentally.
Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li 2 O 2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO 4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li 2 O 2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li 2 O 2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.