While galvanic exchange is commonly applied to metallic nanoparticles, recently its applicability was expanded to metal-oxides. Here the galvanic exchange is studied in metal/metal-oxide core/shell nanocrystals. In particular Sn/SnO2 is treated by Ag+, Pt2+, Pt4+, and Pd2+. The conversion dynamics is monitored by in situ synchrotron X-ray diffraction. The Ag+ treatment converts the Sn cores to the intermetallic AgxSn (x ∼ 4) phase, by changing the core’s crystal structure. For the analogous treatment by Pt2+, Pt4+, and Pd2+, such a galvanic exchange is not observed. This different behavior is caused by the semipermeability of the naturally formed SnO2 shell, which allows diffusion of Ag+ but protects the nanocrystal cores from oxidation by Pt and Pd ions.
Ultrathin MgO(100) films serving as a diffusion barrier between ferromagnetic electrodes and GaAs(001) semiconductor templates have been investigated. Using Fe as an exemplary ferromagnetic material, heterostructures of Fe/MgO/GaAs(001) were prepared at 200 °C with the MgO thickness ranging from 1.5 to 3 nm. Structural characterization reveals very good crystalline ordering in all layers of the heterostructure. Auger electron spectroscopy depth-profiling and cross-sectional high-resolution transmission electron microscopy evidence diffusion of Fe into MgO and-for too thin MgO barriers-further into GaAs(001). Our results recommend a MgO barrier thickness larger than or equal to 2.6 nm for its application as a reliable diffusion barrier on GaAs(001) in spintronics devices.
We studied growth, structure, stress, oxidation state as well as surface and interface structure and composition of thermally-evaporated thin MoO films on the technologically important III/V-semiconductor substrate GaAs(0 0 1). The MoO films grow with Mo in the 6+ oxidation state. The electrical resistance is tunable by the oxygen partial pressure during deposition from transparent insulating to semi-transparant halfmetallic. In the investigated growth temperature range (room temperature to 200 °C) no diffraction spots are detected by x-ray diffraction. However, high resolution transmission electron microscopy reveals the formation of MoO nanocrystal grains with diameters of 5-8 nm. At the interface a ≈3 nm-thick intermediate layer has formed, where the single-crystal lattice of GaAs gradually transforms to the nanocrystalline MoO structure. This interpretation is corroborated by our in situ and real-time stress measurements evidencing a two-stage growth process as well as by elemental interface analysis revealing coexistance of Ga, As, Mo, and oxygen in a intermediate layer of 3-4 nm.
We report on the influence of growth temperature and post-growth annealing on interface formation and film structure of thin MoO3 films on GaAs(001), which plays an important role for a future application as carrier-selective contacts or diffusion barriers in III/V-semiconductor spin- and optoelectronics or photovoltaics. Growth and post-growth annealing were performed in a manner that emulates heterostructure growth and lithographic processing. High-resolution transmission electron microscopy reveals nanocrystalline (“amorphous”) growth at temperatures up to 200°C and a transition to polycrystalline growth at about 400°C. Spatially resolved chemical analysis by energy dispersive x-ray spectroscopy reveals strong intermixing at the MoO3/GaAs(001) interface proceeding during both film deposition and annealing. Our results evidence the important role of intermixing occurring during the process of interface formation at the very beginning of deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.