The cytoskeletal protein vinculin contributes to the mechanical link of the contractile actomyosin cytoskeleton to the extracellular matrix (ECM) through integrin receptors. In addition, vinculin modulates the dynamics of cell adhesions and is associated with decreased cell motility on two-dimensional ECM substrates. The effect of vinculin on cell invasion through dense three-dimensional ECM gels is unknown. Here, we report how vinculin expression affects cell invasion into three-dimensional collagen matrices. Cell motility was investigated in vinculin knockout and vinculin expressing wild-type mouse embryonic fibroblasts. Vinculin knockout cells were 2-fold more motile on two-dimensional collagen-coated substrates compared with wild-type cells, but 3-fold less invasive in 2.4 mg/ml three-dimensional collagen matrices. Vinculin knockout cells were softer and remodeled their cytoskeleton more dynamically, which is consistent with their enhanced two-dimensional motility but does not explain their reduced three-dimensional invasiveness. Importantly, vinculin-expressing cells adhered more strongly to collagen and generated 3-fold higher traction forces compared with vinculin knockout cells. Moreover, vinculin-expressing cells were able to migrate into dense (5.8 mg/ml) threedimensional collagen matrices that were impenetrable for vinculin knockout cells. These findings suggest that vinculin facilitates three-dimensional matrix invasion through up-regulation or enhanced transmission of traction forces that are needed to overcome the steric hindrance of ECMs.Cell migration is an important and fundamental biomechanical process that plays an essential role in inflammatory diseases, embryonic development, wound healing, and metastasis formation. Current concepts of cell migration have been established in two-dimensional models, but they can explain only partially the migratory behavior in three dimensions. For instance, the migratory capability of cells on two-dimensional substrates depends mainly on adhesion strength, adhesion dynamics, and the dynamics of cytoskeletal remodeling (1, 2), whereas the migratory capability of cells in three-dimensional connective tissue depends also on the steric hindrance of the matrix, matrix degradation by proteolytic enzyme secretion, and the generation of protrusive or contractile forces (1, 3-5). The balance of all these parameters-adhesion strength, cytoskeletal remodeling, matrix degradation, and the generation and transmission of contractile forces-is important for the migration speed in three-dimensional extracellular matrix (ECM) 2 (6). Depending on this balance, a broad variety of invasion strategies between different cell types and even within the same cell type are possible (7).The connection between the ECM and the actomyosin cytoskeleton through integrin-type cell-matrix adhesion receptors is facilitated by the mechano-coupling protein vinculin (8, 9). The effect of vinculin on the migration of cells has previously been investigated using two-dimensional ECM substrates, whe...
Vinculin binds to multiple focal adhesion and cytoskeletal proteins and has been implicated in transmitting mechanical forces between the actin cytoskeleton and integrins or cadherins. It remains unclear to what extent the mechano-coupling function of vinculin also involves signaling mechanisms. We report the effect of vinculin and its head and tail domains on force transfer across cell adhesions and the generation of contractile forces. The creep modulus and the adhesion forces of F9 mouse embryonic carcinoma cells (wild-type), vinculin knock-out cells (vinculin −/−), and vinculin −/− cells expressing either the vinculin head domain, tail domain, or full-length vinculin (rescue) were measured using magnetic tweezers on fibronectin-coated super-paramagnetic beads. Forces of up to 10 nN were applied to the beads. Vinculin −/− cells and tail cells showed a slightly higher incidence of bead detachment at large forces. Compared to wild-type, cell stiffness was reduced in vinculin −/− and head cells and was restored in tail and rescue cells. In all cell lines, the cell stiffness increased by a factor of 1.3 for each doubling in force. The power-law exponent of the creep modulus was force-independent and did not differ between cell lines. Importantly, cell tractions due to contractile forces were suppressed markedly in vinculin −/− and head cells, whereas tail cells generated tractions similar to the wild-type and rescue cells. These data demonstrate that vinculin contributes to the mechanical stability under large external forces by regulating contractile stress generation. Furthermore, the regulatory function resides in the tail domain of vinculin containing the paxillin-binding site.
We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.