The thermal insulation properties of a military wet/cold protection glove of the German Bundeswehr were investigated using the thermophysiological simulation device CYBOR with a heated full-scale hand model. The aim of this study was the physiology related and more reliable estimation of a database for the thermal comfort range of the glove in terms of environmental limit temperatures and maximum safe wearing times (limit times). For that purpose the simulation device CYBOR is equipped with a control feature allowing the simulation of the physiological effect that the blood flow into the hands as the dominant heat source is reduced with decreasing skin temperature (vasoconstriction effect). In the simulation test, the criterion defining the thermal comfort range of the glove was the maintenance of a minimum hand phantom skin temperature of 15 degrees C. For various assumed metabolic rates between 50 and 175 W m(-2) and environmental temperatures down to -22 degrees C, the maximum safe wearing times within the thermal comfort range of the military glove were estimated between only 20 min and almost 1 h. The used simulation scenario for the prediction of environmental limit temperatures, however, tends to deliver too low values in correlation to the estimated limit times and needs further critical consideration. The estimated data concerning the thermal comfort range of the wet/cold protection glove of the German Bundeswehr leads to the recommendation for a use of this model in mild cold climatic regions. The presented thermophysiological simulation procedure for the evaluation of the cold protection properties of gloves in terms of maximum safe wearing times within the thermal comfort range can be a useful tool to establish practical operating instructions for soldiers or civilians acting in cold environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.