Abstract-Geometry generators are commonly used in video games and evaluation systems for computer vision to create geometric shapes such as terrains, vegetation or airplanes. The parameters of the generator are often sampled automatically which can lead to many similar or unwanted geometric shapes. In this paper, we propose a novel visual exploration approach that combines the abstract parameter space of the geometry generator with the resulting 3D shapes in a composite visualization. Similar geometric shapes are first grouped using hierarchical clustering and then nested within an illustrative parallel coordinates visualization. This helps the user to study the sensitivity of the generator with respect to its parameter space and to identify invalid parameter settings. Starting from a compact overview representation, the user can iteratively drill-down into local shape differences by clicking on the respective clusters. Additionally, a linked radial tree gives an overview of the cluster hierarchy and enables the user to manually split or merge clusters. We evaluate our approach by exploring the parameter space of a cup generator and provide feedback from domain experts.
Good test data is crucial for driving new developments in computer vision (CV), but two questions remain unanswered: which situations should be covered by the test data, and how much testing is enough to reach a conclusion? In this paper we propose a new answer to these questions using a standard procedure devised by the safety community to validate complex systems: the hazard and operability analysis (HAZOP). It is designed to systematically identify possible causes of system failure or performance loss. We introduce a generic CV model that creates the basis for the hazard analysis and-for the first time-apply an extensive HAZOP to the CV domain. The result is a publicly available checklist with more than 900 identified individual hazards. This checklist can be utilized to evaluate existing test datasets by quantifying the covered hazards. We evaluate our approach by first analyzing and annotating the popular stereo vision test datasets Middlebury and KITTI. Second, we demonstrate a clearly negative influence of the hazards in the checklist on the performance of six popular stereo matching algorithms. The presented approach is a useful tool to evaluate and improve test datasets and creates a common basis for future dataset designs.
-This paper presents the framework of a novel approach to combine multi-modal sensor information from audio and video modalities to gain valuable supplementary information compared to traditional video-based observation systems or even just CCTV systems. A hierarchical, multimodal sensor processing architecture for observation and surveillance systems is proposed. It recognizes a set of predefined behavior and learns about usual behavior. Deviations from "normality" are reported in a way understandable even for staff without special training. The processing architecture including the physical sensor nodes is called SENSE (smart embedded network of sensing entities) [1, 4].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.